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Abstract
The enhancement of the ultrasound system by adding diverse oxidants to remove a model contaminant (acetaminophen, ACE) in 
water was investigated. Different parameters were evaluated to study their effect on both the degradation kinetics and the synergy 
of the combination. The variables studied were the ultrasonic frequency (575, 858, and 1135 kHz), type of oxidant (hydrogen 
peroxide, sodium peroxydisulfate (or persulfate, PDS), and potassium peroxymonosulfate (PMS)), ACE concentration (4, 8, and 
40 µM), and oxidant concentration (0.01, 0.1, 1, and 5 mM). Particular interest was placed on synergistic effects, implying that one 
process (or both) is activated by the other to lead to greater efficiency. Interestingly, the parameters that led to the higher synergistic 
effects did not always lead to the most favorable degradation kinetics. An increase in ACE removal of 20% was obtained using the 
highest frequency studied (1135 kHz), PMS 0.1 mM, and the highest concentration of ACE (40 µM). The intensification of degra-
dation was mainly due to the ability of ultrasound to activate oxidants and produce extra hydroxyl radicals  (HO•) or sulfate radicals 
 (SO4

•–). Under these conditions, treatment of ACE spiked into seawater, hospital wastewater, and urine was performed. The hospital 
wastewater matrix inhibited ACE degradation slightly, while the urine components inhibited the pollutant degradation completely. 
The inhibition was mainly attributed to the competing organic matter in the effluents for the sono-generated radical species. On the 
contrary, the removal of ACE in seawater was significantly intensified due to “salting out” effects and the production of the strong 
oxidant HOCl from the reaction of chloride ions with PMS.
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Introduction

Contaminants of emerging concern (CECs) include pharma-
ceuticals (PhPs), cosmetics, synthetic and natural hormones, 
endocrine disruptors, disinfection by-products, biocides, etc. 
(Barbosa et al. 2016; Dey et al. 2019; Patel et al. 2019). 
CECs are released from chemical, pharmaceutical, agricul-
tural industries, hospitals, and domestic wastewater (Bilal 
et al. 2019; Ohoro et al. 2019). Removing CECs by con-
ventional methods in wastewater treatment plants (WWTP) 
is challenging. Therefore, CECs reach natural waters (e.g., 
surface water or seawater), causing problems not only to 
human health but also triggering environmental issues such 
as toxicity in the aquatic environment, and the prolifera-
tion of bacterial resistance, among others (Jelic et al. 2011; 
Gracia-Lor et al. 2012; Geissen et al. 2015; Manaia et al. 
2016; Kurwadkar 2019). Because of this, many researchers 
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have focused their studies on advanced oxidation processes 
(AOPs) to effectively degrade CECs in water matrices (Bar-
tolomeu et al. 2018; Miklos et al. 2018; Rizzo et al. 2019).

Ultrasound technique (US), especially high-frequency 
US, is an AOP widely studied for CECs removal (Rayaroth 
et al. 2016; Serna-Galvis et al. 2019b, a; Meng et al. 2019; 
Estrada-Flórez et al. 2020). The US process is based on 
the acoustic cavitation phenomenon, i.e., the ultrasound 
waves induce the formation and growth of bubbles or 
cavities from dissolved gas. These cavities reach a critical 
size, and then they collapse, generating strong conditions 
(~ 5000 K, ~ 1000 atm), which promote the dissociation of 
dissolved oxygen and water molecules producing hydroxyl 
radicals  (HO•). In recent years, several strategies have been 
reported to intensify the degradation of pollutants by US. 
The combination of US with light (sono-photolysis or photo-
sonolysis) (Patidar and Srivastava 2021), iron or iron/oxi-
dants (sono-Fenton process), or iron and light (sono-photo-
Fenton process) (Barzegar et al. 2018; Prada-Vásquez et al. 
2021; Cui et al. 2021a; Patil and Raut-Jadhav 2022), its com-
bination with photocatalysis (sono-photo-catalysis) (Stucchi 
et al. 2019), or even sono-Fenton mediated by  TiO2-P25 
photocatalysis (Xu et al. 2020b; Qi et al. 2020) are among 
the most outstanding alternatives. Also, the combination of 
US with carbonaceous materials has been explored (Diao 
et al. 2020; Grilla et al. 2020).

Recently, the addition of oxidants such as hydrogen per-
oxide, potassium peroxymonosulfate (PMS), or sodium/
potassium persulfate (PDS) to the US process has gained 
the attention of the scientific community (Lim et al. 2014; 
Xu et al. 2020a; Gujar et al. 2021; Lee et al. 2021; Moradnia 
et al. 2022). The addition of  H2O2, PMS, or PDS to ultra-
sound (US/Oxidant system) can enhance the capacity of 
US to generate  SO4

• and extra  HO• from the cleavages of 
these oxidants. Indeed, some works have shown that the US/
Oxidant systems are environmentally friendly and highly 
effective for the treatment of organic pollutants (Raut-Jadhav 
et al. 2016; Lee et al. 2021). In the combination of such 
processes, a synergistic effect is generally expected, which 
implies that one of the processes is positively affected by 
the other, or that each process is activated by the other one 
to improve the degradation efficiency of the target pollutant. 
However, studies usually focus on kinetics or synergy inde-
pendently and few investigations have contrasted the kinetic 
and synergistic aspects of the US/Oxidant combination. The 
ideal scenario in the combinations is that both kinetic and 
synergy values are high and lead to efficient processes (Lim 
et al. 2014; Xu et al. 2020a; Cui et al. 2021b; Ioannidi et al. 
2022; Patil and Raut-Jadhav 2022). The question that arises 
is: are the highly synergistic systems the most kinetically 
favored? This has not been answered yet, and our study pre-
tends to address it.

In this work, we started evaluating fundamental aspects 
of the high-frequency ultrasound in combination with 
 H2O2, PMS, and PDS, with a focus on both synergistic and 
degradation kinetics, using acetaminophen (ACE), also 
called paracetamol, as the model contaminant (see Text S1 
and Table S1 in Supplementary material). The following 
parameters were tested: (i) ultrasonic frequency, (ii) type 
of oxidant, (iii) pollutant concentration, and (iv) oxidant 
concentration. Furthermore, parameters that led to the best 
synergistic effects were selected for a subsequent evaluation 
in the degradation of ACE spiked into various world-real 
matrices: urine, hospital wastewater (HWW), and seawa-
ter (SW). Urine was selected because it constitutes one of 
the main routes of excretion of pharmaceutical compounds. 
In the same way, HWW is also one of the main receiving 
sources of these wastes. Moreover, HWW in some coastal 
areas is discharged directly into the sea. Thus, SW was also 
selected as a probe matrix.

Materials and methods

Reagents

Acetaminophen (ACE) was provided by Laproff (Medellín, 
Colombia). Sodium peroxydisulfate (PDS,  Na2S2O8) was 
purchased from Fisher Scientific (England, UK), and Oxone 
 (KHSO5·0.5KHSO4·0.5K2SO4), which is the source of potas-
sium peroxymonosulfate (PMS,  KHSO5), was supplied by 
Sigma Aldrich (St Louis, USA). Hydrogen peroxide  (H2O2) 
30% (w/v), ammonium heptamolybdate (AHM), sodium 
bicarbonate  (NaHCO3), and solvents for HPLC (analytical 
grade acetonitrile (MeCN) and methanol (MeOH)) were 
purchased from Merck (Darmstadt, Germany). Potassium 
iodide (KI) was supplied by Panreac (Barcelona, Spain). 
Formic acid (HCOOH) was acquired from Carlo-Erba (Val-
de-Reuil, France). All chemicals were used as received with-
out further purification. Distilled water (DW) was used for 
initial pharmaceutical solutions preparation. Milli-Q water 
was employed for HPLC analyses. All mobile phases were 
filtered through 0.45 μm nylon or using mixed cellulose-
ester filters (Advantec).

For the experiments in actual matrices, a sample of 
seawater (SW) collected from the pacific sea (Tumaco, 
Colombia) in July 2021 was used. A hospital wastewater 
sample (HWW) was taken in April 2019 from the effluent 
of a health center from Tumaco (Colombia) during a typical 
day of hospital operation. Furthermore, a real fresh urine 
sample collected in December 2021 from a healthy and no 
medicated person was used. The complete characterization 
of the HWW can be found in the literature (Serna-Galvis 
et al. 2019c, 2022). All samples were kept refrigerated at 
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4 °C until use and filtered (0.45 μm nylon Advantec filters) 
before experiments.

Methods

A Meinhardt ultrasound reactor with a cooling jacket and 
a maximum capacity of 500 mL was utilized for the son-
ochemical experiments. The reactor was connected to a 
Huber-Minichiller thermostatic bath, which was adjusted to 
keep a temperature of 20 ± 3 °C inside the reactor. The ultra-
sonic device was adjusted to the desired frequency through 
different transducers. The actual ultrasonic power densities 
at the different frequencies were measured by the calorimet-
ric method (Text S2, Fig. S1, and Table S2) (Kimura et al. 
1996). A scheme of the reactor is shown in Fig. S2.

Degradation experiments were carried out individually: 
(a) direct oxidation with selected oxidants (PMS,  H2O2, or 
PDS) under mild stirring, and (b) sonolysis at the selected 
frequencies. Subsequently, the degradation on the combined 
system was evaluated: (c) US/Oxidant process at the dif-
ferent frequencies and selected oxidant concentrations. The 
synergy index (S) for the US/Oxidant system was determined 
using Eq. 1 (Torres-Palma et al. 2010).

where kUS/Oxidant corresponds to the pseudo-first-order rate 
constant (k) of the combined process, while kUS and kOxidant 
represent the k values for the individual processes: sonolysis, 
and direct oxidation, respectively. A value of S equal to 1 
implies that the combination has an additive effect; if S is 
lower than 1, the combination has an antagonistic effect. 
Meanwhile, S greater than 1 denotes a synergistic effect. The 
kinetic constants were calculated according to Eq. 2, using 
a pseudo-first-order kinetic model.

Before the degradation experiments in SW, HWW, and 
RU, an initial characterization of the real matrices was car-
ried out by measuring pH, total organic carbon (TOC), and 
conductivity. The pH was measured using a Mettler Toledo 
Seven Compact™ pH Meter. The TOC was measured by 
catalytic combustion in a Shimadzu TOC-L analyzer. The 
conductivity was determined using a SI Analytics Conduc-
tivity Meter Lab 945.

In all experiments, the initial solution pH was not adjusted 
or buffered, and it was determined by the matrix composition 
(i.e., the pharmaceutical, the oxidant, and other matrix com-
ponents, in the case of actual waters evaluation). This con-
sidering that at the experimental conditions: (i)  HO• radicals 
sonogeneration is not pH-dependent (Villaroel et al. 2014), 

(1)S =
k
US∕Oxidant

k
US

+ k
Oxidant

(2)ln

(

C

C
0

)

= −kt

(ii) The neutral ACE structure (pKa ~ 9.4) is not affected by 
the pH variations (2.63–7.41, according to Table S3). Ali-
quots (1200 μL) were taken at different intervals (0, 10, 20, 
40, and 60 min). The samples were used to determine the 
evolution of oxidants  (H2O2,  H2O2 + PDS, or  H2O2 + PMS) 
and the removal of ACE.  H2O2 and  H2O2 + PMS evolution 
was determined by the iodometric method using KI and 
AHM (Serna-Galvis et al. 2015; Liang and He 2018); while 
 H2O2 + PDS evolution was monitored by the iodometric 
method using KI and  NaHCO3 (Liang et al. 2008), with a 
Mettler Toledo UV5 Spectrophotometer in all of the cases 
(see details of the iodometric methods in Text S3).

The removal of ACE was followed using a chromato-
graphic system HPLC-Waters, which consisted of a 1525 
binary HPLC pump and a 2487 dual λ absorbance detec-
tor, and the software Breeze for data collection. Separation 
was performed using a LiChrospher® 100 RP-18 (5 µm) 
column. For the measurement, the samples were introduced 
through a Rheodyne injector valve with a 20 μL loop and 
were analyzed using as mobile phase a mixture of MeCN: 
Milli-Q water 25:75 (% v/v), a flow in an isocratic mode of 
0.7 mL  min–1, and a detection wavelength of 243 nm, during 
a runtime of 7 min (Retention time: 4.7 min).

Results and discussion

Effect of the ultrasonic frequency

The effect of frequency on ACE removal by the US/Oxidant 
system was initially tested. For this, PMS was selected as the 
model oxidant. To guarantee the accurate study of the fre-
quency effect, the experiments were carried out at close val-
ues of actual acoustic power densities (Text S2). Therefore, 
for the tested frequencies the actual power densities were 
84.14, 87.07, and 85.81 W  L–1 (for 575, 858, and 1135 kHz, 
respectively). Figure 1 presents the kinetic constant (k) in 
the ACE treatment by US/PMS at the different ultrasonic 
frequencies, and the corresponding control experiments of 
sonolysis and direct oxidation by PMS (1 mM). Figure 1a 
also presents the synergy values (S) for the combined pro-
cess (detailed graphs of C/C0 vs. time are shown in Fig. S3).

Figure 1a shows that the degradation of ACE is kineti-
cally more favored at 575 kHz in both cases: in the ultra-
sound process acting alone and in the combined system 
(US/PMS). As the frequency increases the size of the 
cavitation bubbles decreases and the collapse time is 
shorter, which reduces the extent of radical formation 
(Lim et al. 2011). In fact, there is a range of frequencies 
in which bubble size and cavitational events are more 
prone to the formation of  HO•. That range has been 
reported to be between 200–600 kHz (Kang et al. 1999; 
Torres et al. 2008; Torres-Palma and Serna-Galvis 2018), 
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and consequently, the contaminants are degraded faster at 
such frequencies. The results of degradation are consist-
ent with the sonolytic experiments carried out in distilled 
water without the contaminant at different frequencies 
(Fig. 1b). The production of  H2O2 gives an indirect meas-
urement of  HO• formation since it is generated by the 
combination of hydroxyl radicals (Wang and Zhou 2016; 
Ferkous et al. 2017).

Figure 1a also depicts the degradation of ACE by PMS 
alone. By direct oxidation, ~ 12% of the pollutant is degraded 
after 1 h of treatment. This was related to the redox potential 
of PMS (E°: 1.82 V) that leads to the oxidation of organic 
compounds directly (Lee et al. 2021). On the other hand, 
the results in Fig. 1a show that although the kinetics were 
favored at 575 kHz followed by 858 kHz, the combination of 
US with the oxidant lead, in both cases, to an additive effect 
(S ~ 1). On the contrary, a synergistic effect was observed at 
the highest studied frequency (i.e., 1135 kHz). These results 
are in agreement with some reports where the synergistic 
effects for the US/Oxidant system occur at high frequencies 
(> 1000 kHz) (Lee et al. 2021). According to our result, 
kinetics is determined by the intrinsic capability of a sys-
tem to degrade the target compound (as occurred at 575 and 
858 kHz), whereas the synergy depends on the improvement 
of an inefficient process by the combination with another one 
(as observed at 1135 kHz).

The higher synergy at 1135  kHz could be due to a 
decrease in the efficiency in the US alone at this frequency, 
and also, to the fact that an increase in the frequency pro-
motes an increase in the population of bubbles resulting in 
a greater number of cavitation events (Torres-Palma and 
Serna-Galvis 2018). Although these events are not so effi-
cient to generate  HO• from water, they could increase the 
kinetic and mechanical energy in the solution, being able to 
activate PMS. Thus, the breakdown of PMS produces extra 
radicals that improve ACE degradation in the system in a 
synergistic way. This is consistent with oxidant monitoring 
in ACE degradation (Fig. 1c) where the PMS consumption 
is higher at 1135 kHz. Therefore, the addition of oxidants 
could be advantageous at such high frequency since various 
activation modes take place simultaneously: attack of radi-
cals coming from water sonication, direct pollutant oxidation 
with PMS, and activation of the oxidant by ultrasonic action.

We should remark that the best synergistic combination 
does not always imply the highest removal effectiveness. 
Combined systems can be synergistic at one frequency 
(e.g., 1135 kHz), but this does not mean they are the most 
efficient kinetically compared with the same combination 
at other frequencies (e.g., 575 kHz, Fig. 1a). Furthermore, 
our results showed that adding oxidants at intermediate fre-
quencies (e.g., 575 kHz), where the sonochemical system 
alone works well, does not result in a significant improve-
ment. Indeed, the increase in degradation efficiency is due to 

Fig. 1  Effect of the ultrasonic frequency. Treatment of ACE by US, direct 
oxidation with PMS, and the US/PMS system after 1  h of treatment at dif-
ferent frequencies: (a) Graph of k vs. frequency with the calculated S values, 
(b)  H2O2 accumulation during sonication in the absence of ACE, (c) oxidants 
 (H2O2 + PMS) accumulation in the treatment of ACE. Conditions: [ACE]: 
40 µM, [PMS]: 1 mM, V: 360 mL, matrix: distilled water,  pHinitial: 5.86 (ACE), 
3.18 (ACE + PMS), frequencies of 575, 858, and 1135 kHz, with power densi-
ties of 84.14, 87.07, and 85.81 W  L–1, respectively
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additive effects between the US alone and the direct action 
of PMS. Thereby, the combination of the US with PMS is 
more convenient if the individual systems have low degrada-
tion efficiencies, and they can be significantly improved by 
their combination; but when US or PMS alone works well, 
it is very difficult to obtain synergistic effects from such 
combination.

Effect of the type of oxidant

The results in “Effect of the ultrasonic frequency” section 
indicated that the research on the synergy promoted by the 
addition of oxidants should be focused on the US system 
which is not very efficient for the degradation of pollut-
ants. Therefore, the frequency of 1135 kHz was selected to 
evaluate the effect of the type of oxidant in the combined 
system, and the combinations of high-frequency ultrasound 
with  H2O2, PMS, or PDS were compared. ACE (40 µM) was 
treated by the US/Oxidant systems, and the direct individual 
action of these three oxidants (at 1 mM) was also measured. 
Results for the k values in the target pollutant treatment are 
shown in Fig. 2 (detailed graphs of C/C0 vs. time and the 
oxidant accumulation  (H2O2 + PMS or  H2O2 + PDS) can be 
found in Fig. S4).

Figure 2 shows that the results for both parameters: deg-
radation kinetics and the synergy for the combined system 
followed the order US/PMS > US/PDS > US/H2O2, with k 
values of 1.8 ×  10–2, 1.5 ×  10–2, and 1.2 ×  10–2  min–1, respec-
tively. These values were higher compared to the direct 
action of oxidants (1.8 ×  10–3, 2.7 ×  10–3, and 1.4 ×  10–3  min–1 
using PMS, PDS, and  H2O2, respectively) or the k value 
obtained by the US alone (9.2 ×  10–3  min–1). Consequently, 

the systems were synergistic by combining US with PMS 
and PDS and approximately additive using  H2O2.

Several physicochemical properties of the oxidants (PMS, 
PDS, and  H2O2) have been used to explain the different effi-
ciencies obtained in advanced oxidation processes for the 
removal of pollutants in the presence of such substances 
(Guerra-Rodríguez et al. 2018; Lee et al. 2020, 2021; Xia 
et al. 2020; Zhu et al. 2021). Thus, the oxidation potentials 

Fig. 2  Effect of the type of oxidant. k values in the treatment of ACE 
by US, direct oxidation, and the US/Oxidant system at 1135  kHz, 
including the calculated S values. Conditions: [ACE]: 40 µM, [PMS, 
PDS, and added  H2O2]: 1 mM, V: 360 mL, matrix: DW,  pHinitial: 5.86 
(ACE), 3.18 (ACE + PMS), 5.72 (ACE + PDS), 5.77 (ACE +  H2O2), 
frequency: 1135 kHz, power density: 85.81 W  L–1

Table 1  Molecular structures and some physicochemical properties of the oxidants and their corresponding radical species

Entries Property PMS PDS H2O2

i E0 (V vs. NHE) 1.82a 2.01a 1.78b

ii Structure

Asymmetricb Symmetricb Symmetricb

iii O–O bond length (Å) 1.45a 1.50a 1.44c

iv O–O bond dissociation 
energy (kJ mol–1) 140-213a 140a 213d

v E0 of radicals (V vs.
NHE)

2.5-3.1 (SO4
–)a,e

1.89-2.72 (HO )a,e 2.5-3.1 (SO4
–)a,e 1.89-2.72 

(HO )a,e

vi t1/2 of radicals (µs) 30-40 (SO4
–)b,e

0.02 (HO )b,e 30-40 (SO4
–)b,e 0.02 (HO )b,e

vii Solubility in water at 
25°C (g L–1) >250f 730 (sodium persulfate)f 1000g

References: a (Lee et al. 2021), b (Wang et al. 2021), c (Bach and Schlegel 2020), d (Pang et al. 2011), e (Bahrami et al. 2018), f (Guerra-Rod-
ríguez et al. 2018) g PubChem (pubchem.ncbi.nlm.nih.gov)
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(E°, Table 1, entry i), the structural features (Table 1, entry 
ii), the lengths and dissociation energies of the O–O bonds 
(Table 1, entries iii and iv, respectively), as well as proper-
ties of their corresponding radical species (oxidation poten-
tials (E°) and half-life times  (t1/2); Table 1, entries v and 
vi, respectively) have been considered. However, properties 
such as the E° of the starting oxidants, and the lengths and 
dissociation energies of the O–O bonds are very similar for 
the three oxidants and cannot explain the found results (US/
PMS > US/PDS > US/H2O2).

On the other hand, cavitation events lead to  HO• forma-
tion intrinsically (Eqs. 3–7) (Minero et al. 2005; Eren 2012; 
Serna-Galvis et al. 2016), and the cleavage of the added 
oxidants can form extra radical species necessary to improve 
the degradation efficiency of the US/oxidant combination. 
For instance,  HO• and  SO4

•– can be produced from PMS 
(Eq. 8), whereas only  SO4

•– radicals can be produced from 
PDS (Eq. 9), and only  HO• radicals can be generated from 
 H2O2 (Eq. 10) (Lee et al. 2021; Wang et al. 2021). Also, the 
sonogenerated radicals can promote the activation of the oxi-
dants (Eqs. 11–18) (Lim et al. 2014; Wang and Zhou 2016; 
Lee et al. 2021; Kiejza et al. 2021).

(3)H
2
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Sulfate radicals, which can be sonochemically generated 
in the presence of PMS or PDS (Eq. 8–9), have a redox 
potential similar to hydroxyl radicals but a longer half-life 
time  (t1/2) (Table 1, entries v and vi), which allows sulfate 
radicals to have more chance to interact with the organic pol-
lutants and degrade them. This explains the better efficiency 
obtained by the US/PMS and US/PDS processes compared 
to the US/H2O2 system, but it does not allow to explain why 
the US/PMS system is more efficient than the US/PDS sys-
tem, mainly because, in both systems, many other reactions 
take place generating extra  HO• and  SO4

•– radicals, together 
with other reactive species (Eqs. 3–18).

Interestingly, it can be seen (Table 1, entry ii) that PMS 
has an asymmetric structure, while PDS and  H2O2 have a 
symmetric peroxide bond.  SO3

– is an electro-withdrawing 
group. Therefore, in PMS, the O–O bond electron density 
leans toward the  SO3

–, leaving the O on the H side with 
a positive charge density (Zhu et al. 2021). Therefore, the 
cleavage of the O–O bond in PMS can occur more easily 
than in symmetric structures such as PDS or  H2O2 (Wang 
et al. 2021), which explains the best results observed for the 
US/PMS system.

Finally, the better performance found in the US/PMS sys-
tem compared to the US/PDS and the US/H2O2 systems may 
be also related to the hydrophobicity/hydrophilicity of the 
oxidants, which is a determinant property for oxidant activa-
tion. In fact, hydrophobicity is associated with the proximity 
of the oxidants to the interface between the cavity and the 
solution bulk where their activation towards radical forma-
tion occurs (Seymour and Gupta 1997; Nanzai et al. 2008; 
Wei et al. 2016). The solubility was selected as an indica-
tor of the degree of hydrophilicity (Table 1, entry vii). As 
seen, solubility increases in the order PMS < PDS <  H2O2. 
Then, PMS is more hydrophobic and it will migrate more 
easily toward the bubble interface, where it can be activated 
to the corresponding radicals. Thereby, these differences in 
chemical structures and hydrophilicity explain the results in 
kinetics and synergies observed in Fig. 2.

Effect of initial concentration of ACE

To study the effect of the initial concentration of the pol-
lutant, degradation experiments were performed using the 
best US(1135 kHz)/PMS(1.0 mM) combination and three 
different concentrations of ACE (4, 8, and 40 µM). Con-
trol experiments of sonolysis and direct oxidation were also 

(16)S
2
O

8

2− + HO
2

∙
→ 2SO

4

∙− + O
2

∙− + H+

(17)S
2
O

8

2− + HO∙
→ SO

4

∙− + HSO
4

− + 1∕2O
2

(18)SO
4

∙− + H
2
O∕OH−

→ HSO
4

−∕SO
4

2− + HO∙



Environmental Science and Pollution Research 

1 3

performed. Results are shown in Fig. 3 (detailed graphs of 
C/C0 vs. degradation time and the oxidant accumulation 
 (H2O2 + PMS) are shown in Fig. S5).

It can be seen that after 1 h of treatment, the US system 
eliminated 3.06, 5.92, and 16.67 µM from initial ACE con-
centrations of 4, 8, and 40 µM, respectively. Direct oxidation 
by PMS removed 0.36, 1.10, and 4.68 µM of the initial con-
centrations of 4, 8, and 40 µM of ACE, respectively (Fig. 3a 
and b). Meanwhile, for the combined US/PMS system, it was 
possible to remove 3.58, 7.15, and 25.76 µM from the initial 
concentrations of 4, 8, and 40 µM of ACE, respectively. This 
means that the sonochemical process, the direct oxidation, 
and the US/PMS system are more effective at the highest 

concentration of ACE studied since they can degrade a 
greater amount of moles of the target contaminant. Addition-
ally, although the processes with the different concentrations 
of ACE were synergistic, the highest synergistic effect of the 
US/PMS combination occurs at the highest concentration 
of ACE. This may be because a higher concentration of the 
contaminant increases the number of dispersed molecules in 
the solution; therefore, the probability that these molecules 
approach the cavitation bubbles and the sites with the high-
est concentration of radicals  (HO• and  SO4

•–) is greater, 
thus favoring degradation. However, it has been reported that 
concentrations of the contaminant above a threshold value 
can saturate the interfacial region of cavities, decreasing the 
degradation (Panda et al. 2020).

Effect of oxidant concentration

To determine the effect of the oxidant concentration on the 
synergistic effects of the US(1135 kHz)/PMS combina-
tion, the kinetics in the ACE removal (40 µM) using several 
PMS concentrations (0.01, 0.1, 1, and 5 mM) was evaluated. 
Direct oxidation was also evaluated at the selected PMS con-
centrations. Results are shown in Fig. 4 (detailed graphs 
of C/C0 vs. degradation time and the oxidant accumulation 
 (H2O2 + PMS) are shown in Fig. S6).

Figure 4 shows that as the PMS concentration increased, 
the degradation kinetics augmented in the direct oxidation 
(PMS) and the US/PMS systems. However, the synergis-
tic effect was observed at PMS concentrations of 0.01, 0.1, 

Fig. 3  Effect of initial ACE concentration. Treatment of ACE by US, 
direct oxidation, and the US/PMS system at 1135 kHz: (a, b) Con-
centration of ACE vs. time with the calculated S values. Conditions: 
[ACE]: 4, 8, and 40  µM, [PMS]: 1  mM, V: 360  mL, matrix: DW, 
 pHinitial: 5.77–5.86 (ACE 4–40  µM), 3.18 (ACE 4–40  µM + PMS), 
frequency: 1135 kHz, power density: 85.81 W  L–1

Fig. 4  Effect of oxidant concentration. k values in the treatment 
of ACE by US, direct oxidation, and the US/PMS system after 1  h 
of treatment at 1135  kHz with the calculated S values. Conditions: 
[ACE]: 40 µM, [PMS]: 0.01, 0.1, 1, and 5 mM, V: 360 mL, matrix: 
DW,  pHinitial: 5.86 (ACE), 5.25 (ACE + PMS 0.01  mM), 4.16 
(ACE + PMS 0.1 mM) 3.18 (ACE + PMS 1 mM), 2.69 (ACE + PMS 
5 mM), frequency: 1135 kHz, power density: 85.81 W  L–1
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and 1 mM, being 1, and 0.1 mM PMS the best synergistic 
options (S = 1.61 and 1.50, respectively). When PMS con-
centration is very low (0.01 mM), the synergistic effect of 
the US/PMS combination decreases because PMS at low 
concentration tends to disperse within the solution, making 
it more difficult for PMS molecules to approach the cavity-
solution bulk interface, which is critical to favor the forma-
tion of radicals. On the contrary, when the concentration of 
PMS is increased to 5 mM, the effect of the combination 
decreases and becomes additive. This is because PMS at 
high concentrations, although highly efficient in the direct 
oxidation of ACE, can favor undesired reactions. In fact, 
at very high PMS concentrations, this oxidant and the spe-
cies generated from this can also act as a scavenger of the 
generated radicals (Eqs. 19–24, (Wang and Zhou 2016; Xu 
et al. 2020a; Wang et al. 2021)) or can lead to recombination 
reactions (Eqs. 25–27, (Wang and Zhou 2016; Ferkous et al. 
2017; Cui et al. 2021b)), which decreases both the efficiency 
and the synergy of the ACE degradation.

The above results indicated that the addition of PMS to the 
US system requires a suitable amount of the oxidant, which 
enhances the degradation and synergy. At high PMS concentra-
tions (e.g., 5 mM), its consumption was elevated but scavenger 
effects, as mentioned previously, seem to dominate.

Evaluation of the US/PMS system in real aqueous 
matrices

The treatment of ACE in three relevant matrices (SW, 
HWW, and urine, see Table 2) was considered. Based 
on the previous results, a PMS concentration of 0.1 mM 
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was chosen for the experiments. This considering that 
although 1 mM PMS led to the highest synergy, 10 times 
less PMS led to a very similar synergy value. The target 
pollutant was spiked into these aqueous media to evalu-
ate the degradation. The results for the ACE treatments 
in the complex matrices, using the US/PMS system, are 
shown in Fig. 5.

As seen in Fig. 5a, compared to the treatment of ACE 
in distilled water (DW), the HWW slightly inhibited the 
degradation of the pollutants. In contrast, the urine com-
ponents inhibited the degradation completely. Remarkably, 
the removal of the pharmaceutical in seawater was signifi-
cantly intensified. The few effects in HWW are explained 
considering that it has a low amount of organic matter of 
6.46 mg  L–1 (Table 2), which competes moderately with 
ACE (3.84 mg  L–1 in TOC) for the degrading species. This 
is also evidenced in the monitoring of oxidants (Fig. 5b), 
wherein in the HWW, there is moderate consumption of 
the oxidants. On the contrary, the urine has a very high 
organic load (Table 2), so the degradation of ACE was 
inhibited entirely because the added and sono-generated 
oxidants are easily consumed (in only 10 min) in the oxi-
dation of the non-recalcitrant organic matter present. Inter-
estingly, the degradation of ACE in SW was significantly 
intensified; this is due not only to the fact that the organic 
load in seawater is very low (TOC: 2.84 mg  L–1) but also 
to the fact that there is a high content of inorganic spe-
cies such as chloride ions that could promote the so-called 
"salting-out" effect, pushing the target pollutant close 
to the cavitation bubble, favoring its sono-degradation 
(Serna-Galvis et al. 2015). Furthermore, it is reported that 
at a very high concentration of chloride ions (as present in 
the SW matrix), PMS can react with this anion, producing 
HOCl (Eq. 28) (Lou et al. 2013; Zhou et al. 2018; Liu et al. 
2020), which can also attack ACE (Flores-Terreros et al. 
2022), thus enhancing the pollutant degradation.

Although it is reported that the reaction of  HO• and 
 SO4

•– with chloride ions generates other species such as 
 Cl2

•–, which can degrade organic pollutants (Eqs. 29–32), 
the quenching of  HO• and  SO4

•– by chloride ions usually 

Table 2  Characteristics of the real matrices*

*More information on the HWW of the city of Tumaco-Colombia 
and a more detailed description of the matrix composition can be 
consulted in references (Serna-Galvis et al. 2019c, 2022)

Real matrices pH TOC (mg  L–1) Conduc-
tivity (μS 
 cm–1)

Distilled water (DW) 5.97 0.24 1.5
Seawater (SW) 7.77 2.84 48900
Hospital wastewater (HWW) 7.63 6.46 438
Urine 6.92 2777 9460
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leads to decreased degradation efficiency (Li et al. 2013; 
Lu et al. 2019). These effects of the matrix are also sup-
ported by the high oxidant consumption in SW, as seen 
in Fig. 5b.
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−
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4

2−
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→ HOCl∙−

(30)HOCl∙− + Cl− → Cl
2
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It has been also informed that the presence of inorganic 
species also decreases the solubility of the gas in solution 
and reduces the amount of large degassed bubbles, which 
would otherwise attenuate the acoustic wave. Due to this, 
the sonochemical yield decreases with increasing NaCl con-
centration, but the sonoluminescence (SL) intensity, which is 
produced by the collapse of the bubbles, increases (Pflieger 
et al. 2019). The SL phenomenon can also lead to a photo-
chemical and thermal activation of the PMS, so this physical 
effect caused by the presence of NaCl would be added to the 
increase in the degradation of ACE in SW.

It is important to mention that, for the experiments in 
the different matrices, the measurement of the final TOC 
resulted in similar values to the initial TOC shown in Table 2 
(data not shown), with which it is concluded that the US/
PMS combination similar to the independent US, it is not 
efficient for mineralization (conversion of pollutants and 
degradation by-products to  CO2 and water).

Conclusions

This study showed that the combination of ultrasound with 
oxidants has contrasting effects on synergy and kinetics. 
The synergistic effects of the combination occur at frequen-
cies where the US does not work very well (e.g., 1135 kHz). 
However, the degradation kinetics were more significant at 
intermediate frequencies (i.e., 575 kHz). The oxidant that best 
favored both kinetics and synergy was PMS, which has struc-
tural and physicochemical properties that favor its activation 
by the US into  HO• and  SO4

•–. Thereby, the US/PMS system 
was more effective at the highest concentration of ACE stud-
ied, and a moderate PMS concentration was most appropri-
ate to favor the synergy. Additionally, the system was highly 
effective to degrade the model contaminant in seawater or 
hospital wastewater but inefficient in water matrices with a 
high organic load, such as real urine. We can highlight that 
this study contributed to the understanding of strategies to 
intensify the US technique by activating oxidants, revealing 
that a synergistic system does not always imply that it is the 
most kinetically favorable for the degradation of pollutants.
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