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Abstract- Three types of artificial light sources work with electricity: incandescent, fluorescent and LED. 

These sources require characterization processes to allow selecting the most suitable for the application, to 

evaluate their capacity or more recently to tune and adjust their replicability using control algorithms. 

Therefore, it has been necessary to develop indices that represent these capabilities. The Color Rendering 

Index (CRI) is a measure used to characterize the color reproducibility of a light source in comparison to an 

ideal light source. The Correlated Color Temperature (CCT) is used to characterize light sources by 

representing the color as the temperature of a black body in Kelvin that shows nearly the same chromaticity 

as the analyzed light source. Using spectral information to determine the values in the XYZ space and deriving 

the calculation described in the standard is the best way to estimate the value of the CCT and the CRI. In this 

work, we implement a method to classify light sources and to select an estimation model of the CRI and the 

CCT using a low cost RGB sensor. The model estimation has been developed in this work and a separated 

algorithm for each source type has been built. The results show that using a K-Nearest Neighbor classifier, 

the error resulted less than $3.6%$. The error of the model estimation for the LED was 1.8%, for fluorescent 

light sources 0.09% and 1.2% for incandescent light sources. 
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Index terms: Color Rendering Index, CRI, light sources, Correlated Color Temperature, CCT, K Nearest 

Neighbor, Radial Basis Function, RBF, RGB sensors. 

I. INTRODUCTION 

 

Artificial light sources represent a technological frontier and since their invention, they offered 

humanity new points of view. Later, with the arrival of electricity began a new developmental path, 

seeking to increase their energy efficiency, lifetime and quality. There are three types of artificial 

sources: incandescent, fluorescent and LED. Incandescent light sources produce light by means of 

a wire filament heated to high temperatures, i.e. they emit electromagnetic radiation in the visible 

spectrum due to an electric current passing through them. Incandescent sources are energetically 

inefficient because large amounts of energy are converted into infrared radiation. The fluorescent 

lamps, which contain chemical compounds called phosphors, emit light using the effect of 

fluorescence. These chemicals emit visible light when they get excited by ultraviolet radiation. 

Fluorescent lamps are more efficient than incandescent lamps; however, some models find negative 

effects that affect the electrical network. Moreover, the LED lamps (Light-Emitting Diode) are the 

latest in lighting technology, based on the mechanism of electroluminescence in semiconductor 

materials. When electrons circulate the LED and pass the gap from the conduction band to the 

valence band of the atoms, they liberate energy in the form of a photon. According to the ``2010 

U. S. Lighting Market Characterization" developed for the U.S. Department of Energy by Navigant 

Consulting [1], the 19 % of electricity consumed in 2010, the equivalent to 700 TWh, in the United 

States is used by light sources, of these, 175 TWh were used in residences and 349 TWh in 

commercial environments. 

Light plays a fundamental role in the interpretation of color. Objects reflect it and the receptors in 

the retina absorb it to generate our perception of color. Progress has been made building 

mathematical models that describe color and light sources. The most important are those made by 

the International Commission on Illumination (CIE for its acronym in French). Light sources play 

a key role in color perception, without light there is no color and, therefore, it is important to find 

characterization models. One measure to characterize light sources is the Color Rendering Index 

(CRI) [2]. The CRI is a measure used to characterize the ability of a light source to reveal the color 

of an object realistically compared to an ideal or natural source of light; but the use of this index is 

still under discussion and work has been done to compare it with more complex indices [3]. 
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Another measure to characterize color is the Correlated Color Temperature (CCT) [4]. The CCT is 

used to characterize light sources by representing the color as the temperature of a black body in 

Kelvin that shows nearly the same chromaticity as the analyzed light source. There are several 

revisions from the original model [5], and some applications [6]. The best way to estimate the value 

of a CCT source is using the spectral information to determine the values in XYZ space. The values 

presented in [7] are used to convert the chromaticity coordinates, followed by using the defined 

reference point and the polynomial to calculate the CCT value. With the CCT and the CRI a set of 

mathematical descriptors can be obtained, which represent the light source. In addition, its direct 

relation to color is useful in the reconstruction of color models, and useful in many applications 

[8–10], just as RGB sensor or photodetectors applications [6,11–16]. 

If one considers spectrometry, it is difficult to implement the model and this complicates its use in 

common applications as dynamic lighting control [17–19], but the usefulness of adding controlled 

CCT-CRI models to such systems is indisputable. However, this implies the acquisition of SPD 

(Spectral Power Distribution), which is an economically expensive process. 

Previously we developed a linear model to estimate the CCT with a limited set of SPD, with an 

error close to 6 % [20]. Similarly, we developed an estimation for the CRI [21] with a subset of 

SPD used in [20]; in this case the estimation error was also close to 6 %. The error in both models 

and the apparent non-linearity between the SPD and the measurements, led us to find solutions to 

reduce the error. Initially, it took the SPD again, in total 54, 34 of LED light sources, 16 of 

incandescent light sources and 6 of fluorescent light sources. The spectral proximity of sources of 

the same class (although obtained from different manufacturers) showed that the best option was 

building a model for each one; however, it was necessary to solve the problem of automatic 

classification. In this work, we implement a method for the classification of light sources and then 

select a model estimation of the CRI and the CCT using a low cost RGB sensor. The estimation 

model was also developed in this work and was necessary to build a separate algorithm for each 

type of light source. The results show that using a K-Nearest Neighbor classifier produced an error 

between 2.47 % and 4.44 % and an error of the estimation model for the LEDs between 1.24 % 

and 4.95 %. The error obtained with the Radial Basis Function (RBF) who have demonstrated their 

use in many areas [22,23], was between 0.00 % and 4.84 % for fluorescent light sources and 0.17 

% and 1.2 % for incandescent light sources. 
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In the ``Materials and Methods" section some characteristics of the RGB sensors are described, 

subsequently the calculation model for the CCT and the CRI using the SPD is shown, and finally 

the architecture of the RBF model is presented. In the ``Results" section, some information about 

the database acquisition is shown and the error analysis for the classifier, as well as the individual 

regression models, are presented. The final part of this work draws conclusions. 

II. MATERIALS 

a. Color Sensors 

TCS3414CS 

The TCS3414CS is a color sensor manufactured by Texas Advanced Optoelectronic Solutions 

(TAOS). It is comprised of an 8x2 array of filtered photodiodes, four of which have red filters, four 

blue, and four green, the remaining four are not filtered, as shown in Figure 1. Each of the four 

sensor channels (Red, Green, Blue, and Clear) delivers its output in a format of 16 bits using I2C 

protocol information at 400 KHz. The gain of the analog converter and the integration time are 

programmable. The sensor has a synchronization input (SYNC), which allows the precise 

controlling of the integration of external sources. Figure 1 shows a magnified image of the sensor. 

 

 

Figure 1. Microscopy image TCS3414CS 
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. 
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Table 1 shows some important features of the TCS3414CS color sensor. An internal filter 

eliminates the signal fluctuation caused by AC lighting flicker. An external capacitor is not needed. 

 

Table 1. Characteristic TCS3414CS 

Characteristic Value Units 

Sensor Photodiode [𝑁𝐴] 

Clock frequency 0 –  400 [𝐾𝐻𝑧] 

A/D Resolution 16 [𝑏𝑖𝑡𝑠] 

Operating voltage 2.7 − 3.6 [𝑉] 

Supply Current (𝑉𝐷𝐷 = 3.6) 8.7-11 [𝑚𝐴] 

Operating temperature −40 − 85 [°𝐶] 

Communication 𝐼2𝐶 [𝑁𝐴] 

Chanels R, G, B, clear [𝑁𝐴] 

 

ADJDS311 

The ADJDS311 is a color sensor manufactured by Avago Technologies. This one is made of a 7x6 

array of filtered photodiodes, ten of which have red filters, ten blue ones, and ten green ones, the 

remaining ten are not filtered, as shown in Figure \ref{fig:ADJDS311}. Each one of the four sensor 

channels (Red, Green, Blue, and Clear) delivers its output in a format of 10 bits using I2C protocol 

information at 100 KHz. The sensitivity is controlled control via a serial interface and can be 

optimized for the different color channel. Figure \ref{fig:ADJDS311} shows a magnified image of 

the sensor. 

 

Figure 2. Microscopy image ADJDS311 

 

 

 

 



J.-S. Botero V., F.-E. López G., J.-F. Vargas B., CLASSIFICATION OF ARTIFICIAL LIGHT SOURCES AND ESTIMATION OF 
COLOR RENDERING INDEX USING RGB SENSORS, K NEAREST NEIGHBOR AND RADIAL BASIS FUNCTION 

1510 

 

Table 2 shows some important features of the ADJDS311 photo sensor. The sensor can be used in 

conjunction with a white LED for measuring the color on surfaces. It does not need an external 

capacitor. 

Table 2. Characteristic TCS3414CS 

Characteristic Value Units 

Sensor Photodiode [𝑁𝐴] 

Clock frequency 0 –  100 [𝐾𝐻𝑧] 

A/D Resolution 10 [𝑏𝑖𝑡𝑠] 

Operating voltage 2.7 − 3.6 [𝑉] 

Supply Current (𝑉𝐷𝐷 = 3.6) 3.8-5 [𝑚𝐴] 

Operating temperature 0 − 70 [°𝐶] 

Communication 𝐼2𝐶 [𝑁𝐴] 

Chanels R, G, B, clear [𝑁𝐴] 

 

b. CIE standard observer matching functions 

The CIE �̃�(𝜆), �̃�(𝜆), y �̃�(𝜆) color matching functions are curves numerically representing the 

response of an observer, as shown in Figure 3. These functions can be regarded as the spectral 

sensitivity curves of three linear light detectors, which produce the CIE tri-stimulus values 𝑋, 𝑌 

and 𝑍. This set of functions is known as the Standard Observer. [24] shows defined CIE standard 

colorimetric observer tables that were used for the calculations in this article. 

 

 

Figure 3. CIE Standard Observer color matching functions 

 

CCT and CRI calculation 

The CIE 𝑋, 𝑌 and 𝑍 coordinates of a light source can be calculated using the Spectral Power 

Distribution (SPD) of the light source and the CIE Standard Observer matching functions. The 

equations are presented in (1) where 𝐾 is a constant for normalized 𝑌 a 100. 
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𝑋 = 𝐾 ∑ 𝑆𝑃𝐷(𝜆) ∙ �̃�(𝜆)

780

𝜆=380

 

(1) 𝑌 = 𝐾 ∑ 𝑆𝑃𝐷(𝜆) ∙ �̃�(𝜆)

780

𝜆=380

 

𝑍 = 𝐾 ∑ 𝑆𝑃𝐷(𝜆) ∙ �̃�(𝜆)

780

𝜆=380

 

 

The chromaticity coordinates 𝑥, 𝑦  can be obtained from 𝑋, 𝑌 y 𝑍 values. These equations are 

presented in (2). 

 

𝑥 =
𝑋

𝑋 + 𝑌 + 𝑍
 

(2) 

𝑦 =
𝑌

𝑋 + 𝑌 + 𝑍
 

 

Later, with the equations shown in [7], the Correlated Color Temperature (CCT) is estimated. The 

equations are presented in (3). 

 

𝑛 =
𝑥 − 0.3320

0.1858 − 𝑦
 

(3) 
𝐶𝐶𝑇 = 449𝑛3 + 3525𝑛2 + 6823𝑛 + 5520 

 

The next step is to determine the reference illumination based on the CCT of the light source. The 

reference light has the same CCT as the light source of interest, which is calculated using equation 

(4) if the value of CCT < 5000 K or using the model presented in (5), if otherwise. In (5), ℎ is the 

Planck constant, 𝑐 is the light speed, 𝑘 is the Boltzmann constant and 𝜆 is the wavelength. 
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For CCT ≥ 5000 K, the reference light can be calculated as shown in (5), where 𝑆0(𝜆), 𝑆1(𝜆) and  

𝑆2(𝜆) are vectors of the distribution of daylight. 
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 (5) 

 

Then the values of CIE 1960 (u, v) are determined for each of the eight color samples (TCS), both 

as a source of interest and as the reference illumination values for each (𝑋, 𝑌 𝑎𝑛𝑑 𝑍),as shown in (6). 

 

𝑋𝑖 = 𝐾 ∑ 𝑆𝑃𝐷(𝜆) ∙ �̃�(𝜆) ∙ 𝑇𝐶𝑆𝑖(𝜆)𝑑𝜆

780

𝜆=380

 

(6) 
𝑌𝑖 = 𝐾 ∑ 𝑆𝑃𝐷(𝜆) ∙ �̃�(𝜆) ∙ 𝑇𝐶𝑆𝑖(𝜆)𝑑𝜆

780

𝜆=380

 

𝑍𝑖 = 𝐾 ∑ 𝑆𝑃𝐷(𝜆) ∙ �̃�(𝜆) ∙ 𝑇𝐶𝑆𝑖(𝜆)𝑑𝜆

780

𝜆=380

 

 

Now the CIE 1960 (u, v) values are derived for each TCS using (8). 

  

𝑢 =
4𝑋

𝑋 + 15𝑌 + 3𝑍
 

(7) 
𝑣 =

6𝑋

𝑋 + 15𝑌 + 3𝑍
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The adaptive color shift Von Kries is applied to respect the differences between the states of the 

chromatic adaptation of the light source of interest and the reference illumination as shown in (8). 

The c and d values are calculated for all the reference sources. 

 

𝑐 =
1

𝑣
(4 − 𝑢 − 10𝑣) 

(8) 

𝑑 =
1

𝑣
(1.708𝑣 + 0.404 − 1.481𝑢) 

𝑢𝑘,𝑖 =

10.872 + 0.404
𝑐𝑟𝑒𝑓

𝑐𝑘
𝑐𝑘,𝑖 − 4

𝑑𝑟𝑒𝑓

𝑑𝑘,𝑖
𝑑𝑘,𝑖

16.518 + 1.481
𝑐𝑟𝑒𝑓

𝑐𝑘
𝑐𝑘,𝑖 −

𝑑𝑟𝑒𝑓

𝑑𝑘,𝑖
𝑑𝑘,𝑖

 

 

𝑣𝑘,𝑖 =
5.520

16.518 + 1.481
𝑐𝑟𝑒𝑓

𝑐𝑘
𝑐𝑘,𝑖 −

𝑑𝑟𝑒𝑓

𝑑𝑘,𝑖
𝑑𝑘,𝑖

 

 

Now, the CIE 1964 U*W*V values are determined for each TCS (9). 

 

𝑊𝑖
∗ = 25(𝑌𝑖)

1/3 − 17 

(9) 𝑈𝑖
∗ = 13(𝑊𝑖)(𝑢𝑖 − 𝑢) 

𝑉𝑖
∗ = 13(𝑊𝑖

∗)(𝑣𝑖 − 𝑣) 

 

Finally the color shift is determined ∆E for each TCS, using the equation (10). 

 

∆𝐸𝑖 = √(𝑈𝑟𝑒𝑓,𝑖
∗ − 𝑈𝑘,𝑖

∗ )2 + (𝑉𝑟𝑒𝑓,𝑖
∗ − 𝑉𝑘,𝑖

∗ )2 + (𝑊𝑟𝑒𝑓,𝑖
∗ − 𝑊𝑘,𝑖

∗ )2 (10) 

 

And with these values of ∆𝐸 the 𝑅𝑖 and average CRI (11) are calculated.  

 

𝑅𝑖 = 100 − 4.6 ∆𝐸 

(11) 

 

𝐶𝑅𝐼 = 𝑅𝑎 =
1

8
∑ 𝑅𝑖

8

1
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c. Radial Basis Function RBF 

The Neural Networks with Radial Basis Function are commonly built of two layers. These have 

been widely used to approximate functions and to linearize sensors [25]. A hidden layer consists 

of radial functions, and an output layer performs a weighted sum of the output from the hidden 

layer. The output of the hidden layer has the form shown in equation (12). 

 

𝐷 = [𝑑(𝑚𝑖,𝑐1) 𝑑(𝑚𝑖,𝑐2) 𝑑(𝑚𝑖,𝑐3) ⋯ 𝑑(𝑚𝑖,𝑐𝑛)] (12) 

 

In equation (12) 𝑚𝑖 is the set of input variables, 𝑐1, 𝑐2, ..., 𝑐𝑛 are multidimensional centroids 

estimated using the k-means algorithm and 𝑑(𝑚𝑖,𝑐1) denotes a function of the radial distance 

between the sample 𝑚𝑖 and the 𝑐𝑗 centroid. Note that the vector 𝐷 resulting from the hidden layer 

is of dimension [1𝑥𝑛], where 𝑛 is the number of centroids as shown in Figure 4. 

 

Figure 4. RBF architecture 

 

The output layer can be expressed as shown in equation (13). Where 𝐷 is the distance vector 

obtained from the hidden layer, 𝑊 is the weight vector of the output layer obtained from the 

training algorithm and 𝐶𝑅𝐼𝑖 is the output of [1𝑥𝑛] dimension. 
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𝐶𝑅𝐼𝑖 = 𝐷𝑖 ⋅ 𝑊 = [𝑑(𝑚𝑖,𝑐1) 𝑑(𝑚𝑖,𝑐2) 𝑑(𝑚𝑖,𝑐3) ⋯ 𝑑(𝑚𝑖,𝑐𝑛)] ⋅

[
 
 
 
 
𝑤1

𝑤2

𝑤3

⋮
𝑤𝑛]

 
 
 
 

 (13) 

 

To train the output layer in the RBF network, it is necessary to find the solution that fits the system 

shown in (14) best. The rows of 𝐷 in the equation (14) are constructed with the output of the hidden 

layer (𝐷𝑖), where the number of rows is defined by the number of the training samples. The number 

of centroids 𝑛 is estimated with k-means iterating to reduce the error value required by the 

application. 

 

[
 
 
 
 
𝐶𝑅𝐼𝑖
𝐶𝑅𝐼2
𝐶𝑅𝐼3

⋮
𝐶𝑅𝐼𝑛]

 
 
 
 

= 𝐷 ⋅ 𝑊 =

[
 
 
 
 
𝑑(𝑚1,𝑐1) 𝑑(𝑚1,𝑐2) 𝑑(𝑚1,𝑐3,) ⋯ 𝑑(𝑚1,𝑐𝑛)

𝑑(𝑚2,𝑐1) 𝑑(𝑚2, 𝑐2) 𝑑(𝑚2,𝑐3) ⋯ 𝑑(𝑚2,𝑐𝑛)

𝑑(𝑚3,𝑐1) 𝑑(𝑚3, 𝑐2) 𝑑(𝑚3,𝑐3) ⋯ 𝑑(𝑚3,𝑐𝑛)
⋮ ⋮ ⋮ ⋱ ⋮

𝑑(𝑚𝑚,𝑐1) 𝑑(𝑚𝑚,𝑐2) 𝑑(𝑚𝑚,𝑐3) ⋯ 𝑑(𝑚𝑚,𝑐𝑛)]
 
 
 
 

⋅ 𝑊 (14) 

 

The pseudo-inverse is used to solve this system. Pre-multiplying the transpose of 𝐷 in equation 

(14) gives equation (15). 

𝐷𝑇 ⋅ 𝐶𝑅𝐼 = 𝐷𝑇 ⋅ 𝐷 ⋅ 𝑊 (15) 

 

Solving for 𝑊, the projection of the vector 𝑊 is obtained in the column space of 𝐷. It is shown in 

equation (16). Given that 𝐷𝑇 ⋅ 𝐷 matrix is symmetric, the system is always invertible and therefore 

always has a solution. 

�̃� = (𝐷𝑇 ⋅ 𝐷)−1 ⋅ 𝐷𝑇 ⋅ 𝐶𝑅𝐼 (16) 

III. SOLUTION 

 

a. Acquisition 

The database consists of 54 records (SPD), of these, 34 correspond to LED sources, 14 to 

incandescent light sources and 6 to fluorescent light sources. The chosen light sources are from 

different manufacturers, including Osram, General Electric, Philips, and Sylvania. The measured 

CRI (which was estimated with calculus) varied between 59 and 99 and the CCT between 2300 K 
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and 6200 K. Figure 5 shows four SPD samples of fluorescent light sources characterized by peaks. 

The minimum CRI was 59 and the maximum 93.   

 

 

 

 

Figure 5. SPD Fluorescent sources. 

 

In Figure 6, four samples of incandescent light sources are shown. The minimum CRI was 93 and 

the maximum 99. The spectra of incandescent light sources are characterized as being soft and 

having a significantly high component in the infrared spectrum. The infrared part of their spectrum 

causes their energy inefficiency, but on the other hand, these light sources exhibit a high color 

reproducibility. It is also important to know that incandescent light sources have the closest 

spectrum to the SPD of the Sun. 

 

 

Figure 6. SPD Incandescent sources 

 

Figure 7 shows four samples of LED sources. The minimum CRI was 70 and the maximum 93. All 

LEDs characterized in this work are white light sources. The white LED sources are constructed 
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by combining (overlapping) several types of LEDs, these LEDs are overlapped to obtain a white 

response according to the manufacturers’ standards. One of the possibilities of future work, based 

on the results of this work, is to control a LED light source to match a polychromatic illumination 

system where the CCT and CRI cannot be controlled. Such initiatives have already been described 

[26–30], but now they can be studied with greater depth and can focus on particular problems. 

 

Figure 7. SPD LED sources 

IV. EXPERIMENTAL RESULTS 

 

a. Classification 

Figure 8 depicts the distribution of the data read by the RGB sensor TCS3414CS. The data was 

normalized to 8 bits. The RGB values for both sensors and SPD were collected in parallel. The 

data of the LED and incandescent light sources exhibit a high similarity. 

 

 

Figure 8. RGB values TCS3414CS 

 

Figure 9 shows the distribution of the data read by the RGB sensor ADJDS311. The data was 

normalized to 8 bits. The data of the LED and incandescent light sources also exhibit a high 
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similarity here, but this sensor's readings show a better separation between the LED class and the 

incandescent class. 

 

Figure 9. RGB values ADJDS311 

Four datasets were constructed to classify the light sources and estimate the CRI values. RGB1, 

corresponds to the channels R, G, B of the sensor TCS3414CS, RGB2 corresponds to channels R, 

G, B of the sensor ADJDS311, RGBE1 is RGB1 extended with G/B and R/B for the sensor 

TCS3414CS and RGBE2 is RGB2 extended with G/B and R/B for the sensor ADJDS311. Table 3 

shows the average Mean Squared Error (MSE) and standard deviation of the implemented 

classifiers. The mean and standard deviation errors are shown for each classifier because each of 

them is trained with half of the data (randomly selected). The remaining data is used for the actual 

testing. This test improves the convergence analysis of the classifiers and reduces the possibility 

of over-fitting the data. In Table 3, LDF is the Linear Discriminant of Fisher, KNN is the K-Nearest 

Neighbor, SVM is the Support Vector Machine (Polynomial Kernel) and NN is the Neural Network 

(Perceptron) with Levenberg–Marquardt algorithm. Table 3 shows that KNN performs best with 

an error of 2.47 %. While the error is equal to the NN in RGBE2 set, the standard deviation is 

higher. In addition, it is clearly shown that the RGB2 sensor performs better. 

Table 3. Classification error 

  Fisher KNN SVM NN LVM 

RGB1 𝜇 0.0667 0.0444 0.0630 0.0531 

RGB1 𝜎 0.0381 0.0308 0.0319 0.0850 

RGB2 𝜇 0.0346 0.0247 0.0420 0.0407 

RGB2 𝜎 0.0350 0.0297 0.0453 0.0417 

RGBE1 𝜇 0.0568 0.0407 0.0630 0.0654 

RGBE1 𝜎 0.0333 0.0393 0.0414 0.0800 

RGBE2 𝜇 0.0346 0.0247 0.0346 0.0247 

RGBE2 𝜎 0.0307 0.0281 0.0350 0.0327 
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The classification was implemented in order to examine a separate model for each type of source. 

The model transformations between the RGB space and the CRI value are clearly not linear; 

however, the proximity of the sources of the same class can adjust a model to a linear response. 

Table 4 shows the mean square error of the regression implemented for the LED class. For three 

sources two regression models were implemented, one linear and another one with RBF. The 

variable k in Table 4, Table 5 and Table 6 represents the number of centroids in the hidden layer 

of the RBF. The same four data sets, developed in the classification stage, were used, namely 

RGB1, RGB2, RGBE1 and RGBE2. Table 4 shows that the increase in the number of centroids 

reduces the error gradually, and that there was no significant improvement using extended datasets. 

Table 4. Regression error of the LED class 

k 5 10 15 20 25 

RGB1 Linear 0.0495 0.0495 0.0495 0.0495 0.0495 

RGB1 RBF 0.0432 0.0388 0.0311 0.0188 0.0136 

RGB2 Linear 0.0489 0.0489 0.0489 0.0489 0.0489 

RGB2 RBF 0.0409 0.0345 0.0272 0.0241 0.0097 

RGBE1 Linear 0.0463 0.0463 0.0463 0.0463 0.0463 

RGBE1 RBF 0.0447 0.0379 0.0262 0.0205 0.0124 

RGBE2 Linear 0.0459 0.0459 0.0459 0.0459 0.0459 

RGBE2 RBF 0.0416 0.0350 0.0269 0.0176 0.0157 

 

Table 5 shows the estimation error (MSE) using the linear and the RBF models for the fluorescent 

class. It is important to note that fewer centroids are required to converge the error to an acceptable 

level. Again, the error gradually reduces with the increase of the centroids. 

Table 5. Regression error of the FLU class 

k 2 4 6 

RGB1 Linear 0.0355 0.0355 0.0355 

RGB1 RBF 0.0807 0.0330 0.0000 

RGB2 Linear 0.0484 0.0484 0.0484 

RGB2 RBF 0.0772 0.0129 0.0000 

RGBE1 Linear 0.0000 0.0000 0.0000 

RGBE1 RBF 0.0930 0.0330 0.0000 

RGBE2 Linear 0.0000 0.0000 0.0000 

RGBE2 RBF 0.0772 0.0119 0.0000 
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Table 6 demonstrates the estimation error (MSE) using the linear and the RBF models for the 

incandescent class. It is important to note that fewer centroids are required to converge the error to 

an acceptable level. 

Table 6. Regression error of the INC class 

k 2 4 6 

RGB1 Linear 0.0099 0.0099 0.0099 

RGB1 RBF 0.0087 0.0083 0.0072 

RGB2 Linear 0.0109 0.0109 0.0109 

RGB2 RBF 0.0112 0.0105 0.0018 

RGBE1 Linear 0.0037 0.0037 0.0037 

RGBE1 RBF 0.0081 0.0075 0.0015 

RGBE2 Linear 0.0112 0.0112 0.0112 

RGBE2 RBF 0.0101 0.0096 0.0017 

 

Additionally, with the same data, the CCT was estimated. In Table 7 the estimation error using the 

linear model is shown. The RBF estimation was not implemented due to a lower error. 

Table 7. Regresion error CCT estimation 

 LED FLU INC 

RGB1 0.0155 0.0141 0.0057 

RGB2 0.0265 0.0651 0.0299 

RGBE1 0.0128 0.0101 0.0029 

RGBE2 0.0184 0.0111 0.0232 

 

V. CONCLUSION 

 

In this paper, we present a classification model of artificial light sources and individual models, 

constructed to estimate the CRI sources, considering their class using typical low-cost RGB 

sensors. As part of this work, several light sources commonly used in residential and commercial 

environments were characterized and the information provided by the manufacturers was 

corroborated. The results show that the best classifier was the KNN (MSE<3.4 %), and globally, 

the best estimator was the RBF with MSE < 1.4 %. 

The calculation and estimation of these parameters are developed to improve the design of 

intelligent residential lighting systems and of automatic color measurement to close the control 

loop in polychromatic light sources. The CRI provides critical information that can also be used to 

characterize work-spaces and serve as a tool in architectural and lighting design. 
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By replacing a spectrometer or colorimeter with a low-cost RGB sensor and by constructing simple 

estimation models, the complete implementation of intelligent systems is possible. This contributes 

to the improvement in lighting quality and reduces the energy consumption by using hybrid systems 

(natural and artificial light) or polychromatic light sources. 
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