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Spin polarization and magneto-luminescence of confined electron-hole systems
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A BCS-like variational wave-function, which is exact in the infinite field limit, is used to study
the interplay among Zeeman energies, lateral confinement and particle correlations induced by the
Coulomb interactions in strongly pumped neutral quantum dots. Band mixing effects are partially
incorporated by means of field-dependent masses and g factors. The spin polarization and the
magneto-luminescence are computed as functions of the number of electron-hole pairs present in the
dot and the applied magnetic field.

PACS numbers: 71.35.-y, 78.67.Hc, 71.70.Ej

I. INTRODUCTION

In the present paper, we study the spin polarization
and the magneto-luminescence of a neutral, medium-size
quantum dot (qdot) subjected to a strong (pulsed) laser
pumping and a strong magnetic field. There are many
good reasons to study the properties of this system.

On one hand, recent magneto-tunneling experiments1,2

have stated very clearly the role of Zeeman energies, lat-
eral confinement and Coulomb repulsion in the spin po-
larization of a qdot filled with N electrons. At “filling
factors” 2 > ν >

∼ 1, ground-state rearrangements lead to
significant oscillations of the conductance peak positions
as a function of the magnetic field. The situation could
be even more interesting for electron-hole (e-h) clusters,
where additional e-h correlations come into play. Traces
of spin rearrangements shall be seen in the luminescence
and other optical properties.

On the other hand, extensive measurements of quan-
tum well (qwell) luminescence exist for different e-h den-
sities (laser excitation power) and polarizations3. A
BCS-based theory has been proposed4. Very high mag-
netic fields, up to 60 T, have been applied mainly to
low-density systems, and the results have been inter-
preted in terms of isolated neutral and negatively charged
excitons5. Analogous experiments in qdots are lack-
ing, but the available experimental resources are enough
to create a high population of excitons in a medium-
size qdot in a strong magnetic field. 6-exciton lumines-
cence has been undoubtedly observed in single small InAs
quantum dots at B = 06. In qwells, very high e-h den-
sities (1013 pairs/cm2) have been achieved with pulsed
pumping7.

Our model quantum dot is made up from a symmet-
rical GaAs-AlGaAs quantum well, 8.5 nm wide in the
growth direction. Stress is supposed to induce a lateral
confinement, which is described by a parabolic potential
with h̄Ω ≈ 1.2 meV. An electron-hole system is created
in the dot by a strong 5 ps pulsed laser, as it is experi-
mentally done for example in Ref.7. The mean lifetime of
this system is around hundred of ps or even longer, i. e.
a time scale much greater than the characteristic times
(≈ 1 ps) to reach equilibrium8. Thus, at very low tem-

peratures we end up with an “stable” N -pair e-h cluster
in its ground state.

Results for spin-up and -down densities, hole and elec-
tron spin polarizations and for the position and magni-
tude of the coherent luminescence peak as functions of
the magnetic field and of the mean number of excitons
are presented below. The theoretical framework used
is a BCS-like wave function, corrected against particle
number non-conservation by means of a Lipkin-Nogami
procedure9,10. This wave function is able to reproduce
the expected “Bose condensed” state in the B → ∞
limit11,12,13. A big basis of one-particle states is used,
which includes up to 3 Landau levels and 202 states per
Landau level. We consider systems with up to 40 e-h
pairs.

The plan of the paper is as follows. In Section II, the
model to be employed is described in details. The basics
of our theoretical scheme are summarized in Section III.
In Section IV, the main results are presented and dis-
cussed. Concluding remarks are given in the last section.

II. THE MODEL

We consider a system of N electrons and N holes con-
fined in a quasi two-dimensional quantum dot, and in the
presence of a perpendicular magnetic field. As mentioned
above, the qdot is made up from a 85 Å-wide symmet-
ric qwell. A parabolic potential confines the motion of
the particles in the plane perpendicular to the grow di-
rection. The first qwell sub-band approximation is used,
i. e. the confining energies along the z direction are

written as Ez
e(h) = h̄2π2

2me(h)L
2
z
k2

e(h), with ke(h) = 1. Notice

that for the 85 Å-width GaAs well, the gap to the sec-
ond qwell state is ∆Ez

e ≈ 210 meV, and ∆Ez
h ≈ 39 meV

for electrons and holes respectively, whereas the typical
Coulomb energy is ECoulomb ≈ 3.18

√

B[T ] meV. This
model is a common theoretical framework in the study
of strained or self-assembled quantum dots14. By using

the symmetric gauge, ~A(~r) =
~B×~r
2 , dimensionless coordi-

nates, ~r → lB~r, with lB =
√

2h̄c/eB, and using Landau
level (LL) states {|i〉 = |ni, mi, si〉} (ni = 0, 1, · · · ; mi =
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−∞, · · · ,−1, 0, 1, · · · ,∞; and si = ±1/2 are the radial,
angular momentum and spin quantum numbers, respec-
tively) as set of one-particle states, we can write the
Hamiltonian in second quantization as:

H =
∑

i

{

h̄ωe
c

2
εe

i + EZeeman
ei

}

e†iei

+
∑

i

{

h̄ωh
c

2
εh

i + EZeeman
hi

}

h†
ihi

+
∑

ij

h̄〈i|~r2|j〉

{

Ω2

ωe
c

e†iej +
Ω2

ωh
c

h†
ihj

}

+ N {Egap + Ez
e (ke = 1) + Ez

h(kh = 1)}

+
e2

ǫlB







1

2

∑

ijkl

〈ij|
1

|~r|
|kl〉e†ie

†
jelek

+
1

2

∑

ijkl

〈ij|
1

|~r|
|kl〉h†

ih
†
jhlhk

−
∑

ijkl

〈ij|
1

|~r|
|kl〉e†ih

†
jhlek







, (1)

where me(mh) are the electron and hole effective masses,
Ω is the dot confining frequency, and ǫ is the dielectric
constant. Egap is the gap separation between the con-

duction and valence bands, EZeeman
ei(hi)

= ±ge(h)µBs
e(h)
i ,

with ge(h) the effective g-factors, µ is the Bohr magne-

ton, s
e(h)
i are the z-components of the ith particle spin,

ε
e(h)
i = 2ni + |mi| ± mi + 1 are the LL energies for elec-

trons (holes), ω
e(h)
c = eB/me(h)c is the electron (hole)

cyclotron frequency, and ei(hi), e†i (h
†
i ) are the electron

(hole) destruction and creation operators. Convention-
ally, we write sh = ±1/2 for the two branches of the
heavy hole sub-band. To the electronic jz = −3/2, for
example, we ascribe sh = 1/2.

The effective parameters entering the Hamiltonian
(masses and g factors) are magnetic field- and width-
dependent magnitudes to approximately account for
band mixing. For the 85 Å well, we fitted the experi-
mental in-plane heavy hole mass15, thus obtaining:

m85Å
h (B) =

{

0.17, for B < 10 T
0.17+0.0168B

1+0.023B
, for B > 10 T.

(2)

Experimentally, the dependence of the electron g-
factor on well width and magnetic field is well
determined16,17,18,19,20, and in our case we have:

g85Å
e (B) = −0.1667 + 0.0052 B[T]. (3)

The dependence of the hole g-factor on the mag-
netic field for high B values, however, is not prop-
erly determined18,19. Here we assume a linear behavior

with the field, as in the electron case, and fitted it to
5. The result is

g85Å
h (B) = −0.05 B[T]. (4)

Notice that in the B → 0 limit, gh vanish because the
exciton (X) g-factor, defined as gX = ge + gh, and the
electron g-factor are equal in the 85 Å width well18.

With this parameterization, ge changes sign at Bc ≈ 32
T. Consequences of this facts are discussed below.

III. THE BCS SCHEME

The BCS approach has been successfully applied by
Paquet et. al. in the study of the two-dimensional (2D)
e-h system13, and by Fernández-Rossier and Tejedor to
the exciton gas in a qwell4. We used it previously in the
study of finite e-h systems at zero magnetic field10. We
employ the Lipkin-Nogami (LN) scheme to avoid particle
number non-conservation in a finite system. The BCS
wave function is given by

|BCS〉N =
∏

i

(

ui + vie
†
ih

†
ı̄

)

|0〉h|0〉e , (5)

where |0〉h(|0〉e) are the respective electron (hole) vac-
uum. The subscript “N” in the BCS function means
that the average number of pairs is just N , i.e. 〈N̂〉 =

〈BCS|N̂ |BCS〉N = N . ui and vi are the variational
parameters. They fulfill the normalization conditions
u2

i + v2
i = 1, ∀i. The hole state |̄ı〉 which is paired with

the electron state |i〉 = |ni, mi, si〉 is different for the
two magnetic field regimes, reflecting the ground state
spin structure, as it is show in Fig. 1. For B < 32 T,
electrons and holes with opposite spins are paired, then
|̄ı〉 = |ni,−mi,−si〉. Whereas for B > 32 T, the energy
is minimized when the |i〉 electronic state is paired with
|̄ı〉 = |ni,−mi, si〉.

The total angular momentum (projection onto the z
axis), corresponding to |BCS〉N is zero because the an-
gular momentum of each pair is zero. The total electron
or hole spin, however, depend on the populations of spin-
up and down components.

The detailed description of the LN method can be
found in Refs.9,10. For completeness, we sketch the main
results. The LN estimate for the ground state energy is
given by:

ELN = EBCS − 2λ1(〈N̂〉 − N) − λ2(〈N̂
2〉 − N2), (6)

where EBCS is the expectation value of
the effective Hamiltonian Ĥ = H −
N {Egap − Ez

e (ke = 1) − Ez
h(kh = 1)} in |BCS〉N :
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FIG. 1: Schematics of the spin sub-band structure for the two
field regimes. The dotted lines show the paired electron and
hole states in the BCS wave function. The interband optical
transitions for the two circular polarizations of light σ

± are
indicated.

EBCS = N 〈BCS|Ĥ |BCS〉N

=
∑

i

{

h̄ωe
c

2
εe

i +
h̄Ω2

ωe
c

εOA
i + geµBse

i

}

v2
i

+
∑

ı̄

{

h̄ωh
c

2
εh

ı̄ +
h̄Ω2

ωh
c

εOA
ı̄ − ghµBsh

ı̄

}

v2
i

−
e2

ǫlB







∑

i6=j

〈ij|
1

|~r|
|ji〉

(

v2
i v2

j + viuivjuj

)

−
∑

i

〈ii|
1

|~r|
|ii〉v2

i

}

. (7)

Notice that in the second term, the sum runs over hole
states |̄ı〉. εe

i = εh
ı̄ = 2ni + |mi| + mi + 1 are the one-

particle energies, and εOA
i = εOA

ı̄ = 2ni + |mi| + 1 =
〈i|~r 2|i〉 is the expectation value of the harmonic poten-
tial. The mean value of the number of pairs is

N = 〈
∑

i

e†iei〉BCS = 〈
∑

i

h†
ihi〉BCS

=
∑

i

v2
i . (8)

The extrema conditions can be written in the standard
form of gap equations

∆i =
e2

ǫlB

∑

j(j 6=i)

〈ij|
1

|~r|
|ji〉

∆j

2
√

∆2
j − (ǫHF

i − µ)2
, (9)
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FIG. 2: Dependence of Eopt −Edark with the magnetic field.
In figures 2 - 5, results for the N = 40 exciton system are
presented.

where the Hartree-Fock energies are given by

ǫHF
i =

1

4
(h̄ωe

c + ωh
c )(2ni + |mi| + mi + 1)

+
1

2

(

h̄Ω2
e

ωe
c

+
h̄Ω2

h

ωh
c

)

(2ni + |mi| + 1)

+
µ

2
B(gesi − ghsı̄) −

e2

2ǫlB
〈ii|

1

|~r|
|ii〉

−
e2

ǫlB

∑

j(j 6=i)

〈ij|
1

|~r|
|ji〉v2

j − λ2(N − v2
i ), (10)

and we have used the usual BCS parameterization

v2
i =

1

2

(

1 −
ǫHF
i − µ

√

∆2
i − (ǫHF

i − µ)2

)

. (11)

The chemical potential µ = λ1 + λ2/2 was introduced to
fix the particle number, and λ2 is determined in the LN
scheme as:

λ2 =
{

〈ĤN̂2〉
(

N2 − 〈N̂2〉
)

+ 〈ĤN̂〉
(

〈N̂3〉 − 〈NN̂2〉
)

+ 〈Ĥ〉
(

〈N̂2〉2 − 〈NN̂3〉
)}{

〈N̂2〉3 + 〈N̂3〉2

+ N2〈N̂4〉 − 〈N̂2〉
(

2N〈N̂3〉 + 〈N̂4〉
)}−1

, (12)

where the expectation values 〈· · ·〉 are taken in the
|BCS〉N state. The resulting equations are solved it-
eratively up to a precision of 10−12 in ǫHF

i . Calculations
were performed for 20 ≤ N ≤ 40 pairs and 606 one-
particle LL states.
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IV. POLARIZATION AND

MAGNETO-LUMINESCENCE

As shown below, the spin polarization of the electronic
subsystem increases as the magnetic field is increased. At
B = 32 T, the electronic g-factor changes sign according
to Eq. 3, leading to a rearrangement of electron-hole
pairing in the absolute ground state. The kind of pairing
minimizing the energy is represented in Fig. 1 by dashed
lines. For B > 32 T, the ground state is dark, and it is not
even clear whether it can be reached by means of light
excitation followed by spin relaxation processes. Thus,
besides the ground state, for B > 32 T, we compute also
the lowest BCS state with σ+ and σ− excitons. Below,
we present results for the N = 40 system, obtained with
three LLs and 202 states per level, i. e. a total of 606
one-particle states.

As mentioned above, two BCS functions may be con-
structed. One in which optical excitons are formed, and
a second one in which dark excitons are formed. The dif-
ference Eopt − Edark is drawn in Fig. 2 as a function of
B, showing that the dark state becomes the ground state
when the value B ≈ 32 T is crossed and the electronic
sub-bands are re-ordered. The absence of efficient spin
relaxation mechanisms may, however, prevent the actual
ground state to be occupied.

It is interesting to note that the difference Eopt−Edark,
in the magnetic field interval shown in Fig. 2 is very close
to the difference between the electronic Zeeman energies.
A simple qualitative picture can be offered for the un-
derstanding of this and the next figures. The properties
of the system are roughly determined by the holes be-
cause of the competition among the hole Zeeman energies
and the total harmonic and Coulomb energies. The hole
occupations are thus very similar for optical and dark
states. The form of e-h pairing provides the “fine struc-
ture”. That is, the minimization of the energy leads to a
definite pairing.

Scaled spin-up and -down densities, obtained from

ρ(↑, ↓)
e (~r) =

∑

i={ni,mi,(↑, ↓)}

j={nj,mj,(↑, ↓)}

φe
i (~r)φ

e
j(~r) N 〈BCS|e†iej |BCS〉N

=
e−r2

π

∑

i={ni,mi,(↑,↓)}

ni! r
2|mi| v2

i

(ni + |mi|)!

[

L|mi|
ni

(r2)
]2

,

(13)

are shown in Fig. 3. At B = 40 T, we show the
ground (dark) and optically-active excited-state densi-
ties, which are almost inverted in agreement with the ar-
gument given above. Notice that there are only four ex-
cess spin-up electrons at B = 20 T. These small net polar-
izations for high magnetic fields are related to the attrac-
tive character of the e-h interaction. Unlike pure electron
systems, small-radius orbits maximize e-h attraction, and
the competition between Zeeman and Coulomb energies
starts at higher fields.

0

0.1

0.2

0.3
(a) B = 20 T

      g.s.

0

0.1

0.2

ρ e
[1

/l 
B2  ]

(b) B = 40 T

      g.s.

0 5 10 r [lB]
0

0.1

0.2

(c) B = 40 T

      e.s.

FIG. 3: Spin-up and down densities. (a) Ground state at
B = 20 T, (b) Ground (dark) state at B = 40 T, and (c)
Excited (optically active) state at B = 40 T.

The “hole dominance picture” leads to changes in the
polarization, as B is increased, through the reconstruc-
tion of the droplet edge, in a way very similar to electrons
near filling factor one21. This fact is illustrated in Fig.
4, where the difference between ground-state spin-up and
-down densities for different values of B are shown. It is
evident that polarized densities differ mainly at the edge,
and that changes in the polarization are more significant
at the edge.

The following two figures, Figs. 5 and 6, contain the
main results of our paper. Electron and hole spin polar-
izations are drawn in Fig. 5a as a function of B. Solid
lines refer to the ground state, while the dashed lines for
B > 32 T refer to the optically active state. Notice that
even at a high field value like 45 T, the electronic polar-
ization is only 70 %. Notice also the change in sign of the
ground-state electronic spin at B = Bc. The inset shows
the total ground-state spin squared, computed from
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0 5 10
r [lB]

0

0.02

0.04

0.06

0.08

ρ eup
 −

 ρ
edo

w
n 
[1

/l B2  
]

B = 20 T
B = 25 T
B = 30 T

FIG. 4: Difference between ground-state spin-up and -down
densities for various magnetic field values.

〈~S2
e 〉BCS =

3

4
N +

∑

i,j

sisjv
2
i v2

j −
∑

i

siv
4
i +

1

2

∑

α

v2
α↑v

2
α↓.

(14)
The total (coherent) magnetoluminescence intensity

for both σ+ and σ− polarizations is presented in Fig. 5b.
We compute it for σ− polarization, for example, from the
expression

Iσ−

total =
∑

f

∣

∣

∣N−1〈f |Pσ− |BCS〉N

∣

∣

∣

2

∝ N 〈BCS|P †
σ− Pσ− |BCS〉N

=

{
∑

α v4
α↑ + (

∑

α uα↑vα↑)
2
, bright state

∑

α v2
α↑v

2
α↓, dark state,

(15)

where |f〉 is a basis of N − 1 particle states , α = (n, m)
is a composed index and, Pσ− =

∑

α eα↑hᾱ↓ is the in-
terband dipole transition operator for the σ− circularly
polarized light. Notice that Itotal is the integrated lumi-
nescence, corresponding to the transition from the given
initial BCS state to any final state. The convention for
solid and dashed lines is the same as in Fig. 5a. It shall
be stressed that the degree of polarization, defined from

Iσ−

total − Iσ+

total

Iσ−

total + Iσ+

total

, (16)

follows very well the behaviour of 〈Sz〉, i. e. the difference
between the occupation of spin-up and -down sub-bands.
This polarization is nearly 10 % at 20 T, and around 70
% at 45 T.

Finally, in Fig. 6 we show results for the position of
the luminescence line and the intensities as functions of

20 25 30 35 40 45
B [ T ]

0

500

1000

1500

T
ot

al
 P

L 
(A

bs
ol

ut
e)

σ−

σ+

(b)

−10

0

10

<
 S

z >

Se

Sh

(a)

20 30 40
0

100

200 < S2

e >

FIG. 5: (a) Electron and hole spin polarizations. For B > 32
T, both ground-state (solid line) and excited-state (dashed
line) properties are drawn. The inset shows the total electron
spin squared. (b) Luminescence intensities for both σ

− and
σ

+ polarizations.

the numbers of pairs in the dot. In our computations, the
energy is corrected against non-conservation of the total
number of excitons, N . Conservation of the number of
σ+ and σ− excitons is not properly taken into account.
Thus, we can not exactly compute the position of the
σ+ and σ− lines. In place of it, we show in Fig. 6a the
difference ∆EN = ELN (N)−ELN (N −1) relative to the
exciton σ− line, EX . The following interesting properties
can be noticed in this figure: a) A blueshift as the number
of excitons is raised7. It is around 0.2 meV/exciton at
N = 20, and 0.15 meV/exciton at N = 30, and b) An
apparent minimum of each curve at B around 30 T, i. e.
at Bc. On the other hand, the intensity (Fig. 6b) shows
an increase with N for both polarizations, as one would
expect from coherent emission.

V. CONCLUDING REMARKS

We have computed the spin polarization and the lu-
minescence of a quantum dot in which a mean number
of electron-hole pairs, N , have been created by a laser
pulse. Band mixing effects were approximately taken
into account by means of well width- and magnetic field-
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FIG. 6: Dependence of the position of the luminescence line
(see main text) and the intensities on the number of pairs in
the dot. EX is the σ

− exciton energy.

dependent masses and g-factors. For the model under
study, the electron g-factor vanishes at Bc ≈ 32 T. It
means that, for magnetic field values around Bc, the elec-
tron polarization, and thus the ratio of intensities given
by formula (16), is determined as a result of the interplay
among Coulomb, confinement and hole Zeeman energies.
The net polarization is only 70 % at B = 45 T because
of the attractive electron-hole interaction.

The general features found in our calculations, i. e.
relatively small polarizations even at high magnetic field
values, blueshift of the luminescence lines with an in-
crease of the laser power, etc seem to be not related to
the specific parametrization used for carrier masses and
g-factors.

The developed computational scheme may be applied
to many other interesting situations, from which two of
them may be distinguished. The first is the stationary
regime, in which constant populations of σ− and σ+ ex-
citons arise as a result of appropriate pumping, recombi-
nation and spin-flip processes3. The second is the study
of the effects of hyperfine interactions between nuclear
and electronic spins on the position of the recombination
lines, known as Overhauser shifts22. Research along both
directions is in progress.
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10 B. A. Rodŕıguez, A. Gonzalez, L. Quiroga, F. J. Rodriguez,

and R. Capote, Int. J. Mod. Phys. B 14, 71 (2000).
11 I. V. Lerner and Yu. E. Lozovik, Zh. Eksp. Teor. Fiz. 80,

1488 (1981) [Sov. Phys.–JEPT 53, 763 (1981)].
12 B. Dzyubenko and Yu. E. Lozovik, Fiz. Tverd. Tela. 25,

1519 (1983). [Sov. Phys. Solid State 25, 874 (1983)].
13 D. Paquet, T. M. Rice, and K. Ueda, Phys. Rev. B 32,

5208 (1985).
14 L. Jacak, P. Hawrylak, and A. Wojs, Quantum Dots

(Springer-Verlag, Berlin, 1998).
15 B. E. Cole, J. M. Chamberlain, M. Henini, T. Cheng, W.

Batty, A. Wittlin, J. A. A. J. Perenboom, A. Ardavan, A.
Polisski, and J. Singleton, Phys. Rev B 55, 2503 (1997).

16 S. P. Najda, S. Takeyama, and N. Miura, Phys. Rev. B 40,

6189 (1989).
17 M.J. Snelling, G. P. Flinn, A.S. Plaut, R. T. Harley, A. C.

Trooper, R. Eccleston, and C. C. Phillips, Phys. Rev. B
44, 11345 (1991).

18 M. J. Snelling, E. Blackwood, C. J. McDonagh, R. T.
Harley, and C. T. B. Foxon, Phys. Rev. B 45, 3922 (1992).

19 N. J. Traynor, R. J. Waburton, M. J. Snelling, and R. T.
Harley, Phys. Rev. B 55, 15701 (1997).

mailto:banghelo@fisica.udea.edu.co
mailto:agonzale@fisica.udea.edu.co
http://arXiv.org/abs/cond-mat/0011166
http://arXiv.org/abs/cond-mat/0011166


7

20 M. Seck, M. Potemski, and P. Wyder, Phys. Rev. B 56,

7422 (1997).
21 C. de C. Chamon and X. G. Wen, Phys. Rev. B 49, 8227

(1994).
22 S. W. Brown, T. A. Kennedy, D. Gammon, and E. S.

Snow, Phys Rev B 54, 17339 (1996); S. W. Brown, T.
A. Kennedy, and D. Gammon, Solid State Nucl. Magn.
Reson. 11, 49 (1998), and references cited therein.


