# Compendium of bag-model matrix elements of the weak nonleptonic Hamiltonian 

John F. Donoghue, Eugene Golowich, and Barry R. Holstein<br>Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01003<br>William A. Ponce<br>Departamento de Física, Universidad de Antioquia, Medellín, Colombia<br>(Received 16 October 1980)

A comprehensive list of baryon and meson single-particle matrix elements of the nonleptonic weak Hamiltonian is presented.

Quantum-chromodynamics (QCD) radiative corrections have had considerable impact on the modern form of the nonleptonic weak Hamiltonian. The first publications on this subject appeared in 1974. ${ }^{1}$ In the following six years, the work of Ref. 1 was extended to include both the effect of mass scales associated with heavy quarks ${ }^{2}$ and also the occurrence of weak vertices at which color-gluon emission occurs. The latter effect can arise either from the existence of as-yet undetected right-handed currents, ${ }^{3}$ or from purely left-handed currents, appearing in the dimension- 5 operators as induced by QCD radiative corrections. ${ }^{4}$
As the subject of QCD radiative corrections progressed, a number of bag-model estimates of single-particle matrix elements associated with various weak Hamiltonians were performed. However, although a partial summary appears in Ref. 5, it remains true that the literature lacks a simple yet up-to-date compilation of these bag-model matrix elements. ${ }^{6}$ This addendum serves to fill that gap. Such a collection can serve as a resource in the future as work on nonleptonic transitions continues. That this subject is still in a state of flux can be inferred from the recent computation of a new dimension-5 term in the weak Hamiltonian, ${ }^{4}$ and the announcement that two-loop corrections to the QCD enhancement factors have been analyzed. ${ }^{7}$
Our procedure is as follows. We identify the operators which underlie $|\Delta S|=1$ transitions, define the notation employed in our analysis, present the analytical form of our matrix elements, and finally exhibit numerical values for a given set of input parameters.

## I. OPERATORS

The $|\Delta S|=1$ nonleptonic weak Hamiltonian is given by

$$
\begin{equation*}
H_{W}=\frac{G_{F} \sin \theta_{C} \cos \theta_{C}}{2 \sqrt{2}} \sum_{i=1}^{7} c_{i}(\mu) O_{i}(\mu), \tag{1}
\end{equation*}
$$

where $\mu$ indicates the energy scale at which the matrix element is to be evaluated. This affects both the coefficient functions $c_{i}$ and the operators $O_{i}$. A reasonable energy scale can be taken as $\mu \simeq(2-3) R^{-1}$ where $R$ is a length, such as the bag radius, characteristic of hadron structure. Thus we have (e.g., see Ref. 4)

$$
\begin{align*}
O_{1}= & H_{B}-H_{A}, \\
O_{2}= & H_{A}+H_{B}+2 H_{C}+2 H_{D}, \\
O_{3}= & H_{A}+H_{B}+2 H_{C}-3 H_{D}, \\
O_{4}= & H_{A}+H_{B}-H_{C},  \tag{2a}\\
O_{5}= & \bar{d} \Gamma_{L}^{\mu} t^{A} s \bar{Q} \Gamma_{R \mu} t^{A} Q, \\
O_{6}= & \bar{d} \Gamma_{L}^{\mu} s \bar{Q} \Gamma_{R \mu} Q, \\
O_{7}= & m_{s} \bar{d} \lambda^{A} \sigma^{\mu \nu}\left(1-\gamma_{5}\right) s G_{\mu \nu}^{A} \\
& +m_{d} \bar{d} \lambda^{A} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) s G_{\mu \nu}^{A},
\end{align*}
$$

where

$$
\begin{align*}
& H_{A}=\bar{d} \Gamma_{L}^{\mu} u \bar{u} \Gamma_{L \mu} s, \\
& H_{B}=\bar{d} \Gamma_{L}^{\mu} s \bar{u} \Gamma_{L \mu} u,  \tag{2b}\\
& H_{C}=\bar{d} \Gamma_{L}^{\mu} s \bar{d} \Gamma_{L \mu} d, \\
& H_{D}=\bar{d} \Gamma_{L}^{\mu} s \bar{s} \Gamma_{L \mu} s .
\end{align*}
$$

In Eqs. (2a) and (2b), we define $\Gamma_{L}^{\mu}=\gamma^{\mu}\left(1+\gamma_{5}\right)$, $\Gamma_{R}^{\mu}=\gamma^{\mu}\left(1-\gamma_{5}\right)$, the $t^{A}$ are $\operatorname{SU}(3)$ matrices normalized as $\operatorname{Tr}\left(t_{A}{ }^{2}\right)=16, Q$ runs over quark flavors $u, d, s$, the quantities $m_{s}, m_{d}$ represent currentquark masses, and $G_{\mu \nu}^{A}$ is the field tensor for color gluons. All color indices are suppressed in Eqs. (2a) and (2b).

In referring to matrix elements of the operator $O_{7}$, it is convenient to employ the decomposition $\sigma^{\mu \nu} G_{\mu \nu}^{A}=2 \vec{\sigma} \cdot \overrightarrow{\mathrm{~B}}^{A}-2 i \vec{\alpha} \cdot \overrightarrow{\mathrm{E}}^{A}$. That is, we consider gluon magnetic and electric field effects separately.

## II. NOTATION

We employ the following notation in writing the matrix elements of the $O_{i}$ in analytical form. For a quark of mass $m$ existing within a hadron bag of radius $R$ in mode $\omega$, we define $p=\left(\omega^{2}-m^{2} R^{2}\right)^{1 / 2}$. The spatial dependence of the upper and lower components of the bag wave functions is given in terms of spherical Bessel functions $j_{0}, \epsilon^{1 / 2} j_{1}$, respectively, where $\epsilon=(\omega-m R) /(\omega+m R)$. The
bag normalization ${ }^{8}$ for the positive-parity modes considered in this paper is $N=p^{2} \mid[2 \omega(\omega-1)$ $+m R]\left.^{1 / 2} \sin p\right|^{-1}$. Throughout, unprimed and primed quantities are to be evaluated in terms of nonstrange- and strange-quark kinematics, respectively.

The bag matrix elements are proportional to wave-function overlap integrals. For operators $O_{i}(i=1, \ldots, 6)$, the relevant integrals are

$$
\begin{equation*}
A=\frac{1}{4 \pi} \int_{0}^{1} u^{2} d u\left[j_{0}{ }^{2}(p u)-\epsilon j_{1}^{2}(p u)\right]\left[j_{0}(p u) j_{0}\left(p^{\prime} u\right)-\left(\epsilon \epsilon^{\prime}\right)^{1 / 2} j_{1}(p u) j_{1}\left(p^{\prime} u\right)\right] \tag{3a}
\end{equation*}
$$

and

$$
\begin{equation*}
B=\frac{1}{4 \pi} \int_{0}^{1} u^{2} d u 2 \sqrt{\epsilon} j_{0}(p u) j_{1}(p u)\left[\sqrt{\epsilon} j_{0}\left(p^{\prime} u\right) j_{1}(p u)+\sqrt{\epsilon^{\prime}} j_{0}(p u) j_{1}\left(p^{\prime} u\right)\right] \tag{3b}
\end{equation*}
$$

The electric and magnetic matrix elements of the operator $O_{7}$ are proportional, respectively, to integrals $I_{E}, I_{M}$ which are defined as

$$
\begin{equation*}
I_{E}=\frac{1}{4 \pi} \int_{0}^{1} d u\left[\sqrt{\epsilon^{\prime}} j_{0}(p u) j_{1}\left(p^{\prime} u\right)+\sqrt{\epsilon} j_{0}\left(p^{\prime} u\right) j_{1}(p u)\right]\left[\frac{1}{\bar{p}^{2}} \frac{2 \bar{\omega}-m R}{\bar{\omega}+\bar{m} R}\left(u-\frac{\sin 2 \bar{p} u}{2 \bar{p}}\right)-u^{3} \bar{\epsilon}^{2}\left[j_{0}{ }^{2}(\bar{p} u)+j_{1}{ }^{2}(\bar{p} u)\right]\right] \tag{4a}
\end{equation*}
$$

and

$$
\begin{align*}
& I_{M}=\frac{1}{4 \pi} \int_{0}^{1} d u\left\{-\frac{4}{3}\left(\epsilon \epsilon^{\prime}\right)^{1 / 2} j_{1}(p u) j_{1}\left(p^{\prime} u\right) \bar{X}\right. \\
&\left.+u^{2}\left[j_{0}(p u) j_{0}\left(p^{\prime} u\right)+\frac{1}{3}\left(\epsilon \epsilon^{\prime}\right)^{1 / 2} j_{1}(p u) j_{1}\left(p^{\prime} u\right)\right]\left[\bar{Y}+\frac{2}{3} \frac{\sqrt{\bar{\epsilon}}}{\bar{p}}\left[j_{0}^{2}(\bar{p} u)-j_{0}^{2}(\bar{p})\right]\right]\right\} \tag{4b}
\end{align*}
$$

where

$$
\begin{align*}
& \bar{X}=\frac{\sqrt{\bar{\epsilon}}}{3 \bar{p}^{3}}\left(1+\frac{1}{2} \cos 2 \bar{p} u-\frac{3}{4} \frac{\sin 2 \bar{p} u}{\bar{p} u}\right),  \tag{5a}\\
& \bar{Y}=\frac{\sqrt{\epsilon}}{3 \bar{p}^{3}}\left(1+\frac{1}{2} \cos 2 \bar{p}-\frac{3}{4} \frac{\sin 2 \bar{p}}{\bar{p}}\right) . \tag{5b}
\end{align*}
$$

The barred quantities in Eqs. (4a)-(5b) take on strange- or nonstrange-quark kinematics, respectively, according to whether or not the integrals $I_{E}, I_{M}$ appear with or without a prime in the following section.

## III. THE MATRIX ELEMENTS

Meson and baryon matrix elements are addressed separately below. In all cases we consider only quark wave functions in the valence model, leaving out quark-sea contributions of the type studied in Ref. 9.

## A. Mesons

The only meson-to-meson matrix element relevant to $|\Delta S|=1$ transitions is $\left\langle\pi^{+}\right| H_{W}\left|K^{+}\right\rangle$. Others such as $\left\langle\pi^{0}\right| H_{W}\left|K^{0}\right\rangle$ can be obtained from isospin relations. Thus we list

$$
\begin{align*}
& \left\langle\pi^{+}\right| O_{1}\left|K^{+}\right\rangle=-4 N^{3} N^{\prime} R^{-3}\left(2 m_{K}^{2}\right)^{1 / 2}(A-B), \\
& \left\langle\pi^{+}\right| O_{i}\left|K^{+}\right\rangle=8 N^{3} N^{\prime} R^{-3}\left(2 m_{K}^{2}\right)^{1 / 2}(A-B), \quad i=2,3,4, \\
& \left\langle\pi^{+}\right| O_{5}\left|K^{+}\right\rangle=\frac{16}{3}\left\langle\pi^{+}\right| O_{6}\left|K^{+}\right\rangle,  \tag{6}\\
& \left\langle\pi^{+}\right| O_{6}\left|K^{+}\right\rangle=-4 N^{3} N^{\prime} R^{-3}\left(2 m_{K}^{2}\right)^{1 / 2}(A+B), \\
& \left\langle\pi^{+}\right| O_{7}^{(E)}\left|K^{+}\right\rangle \\
& \quad=-\frac{16}{3} g\left(m_{s}+m_{d}\right) N N^{\prime} R^{-2}\left(2 m_{K}^{2}\right)^{1 / 2}\left(N^{2} I_{E}-N^{\prime 2} I_{E}^{\prime}\right), \\
& \left\langle\pi^{+}\right| O_{7}^{(M)}\left|K^{+}\right\rangle \\
& \quad=16 g\left(m_{s}+m_{d}\right) N N^{\prime} R^{-2}\left(2 m_{K}^{2}\right)^{1 / 2}\left(3 N^{2} I_{M}+N^{\prime 2} I_{M}^{\prime}\right),
\end{align*}
$$

where the quantity $g$ appearing in the $O_{7}$ matrix elements is the quark-gluon coupling constant evaluated at the energy $\mu$ discussed earlier, and the factor $\left(2 m_{K}^{2}\right)^{1 / 2}$ is our estimate for the meson normalization factor [which equals $\left(4 E_{\pi} E_{K}\right)^{1 / 2}$ for plane-wave states] for bag states. ${ }^{10}$

In order to obtain the corresponding $K^{0}$-to $-\pi^{0}$ matrix elements, we observe that all the $O_{i}$ are $\Delta I=\frac{1}{2}$ operators excepting $O_{4}$, which is pure $\Delta I$ $=\frac{3}{2}$. From this, we infer

$$
\begin{align*}
\left\langle\pi^{0}\right| O_{i}\left|K^{0}\right\rangle & =-\frac{1}{\sqrt{2}}\left\langle\pi^{+}\right| O_{i}\left|K^{+}\right\rangle, \quad i \neq 4 \\
& =\sqrt{2}\left\langle\pi^{+}\right| O_{i}\left|K^{+}\right\rangle, \quad i=4 \tag{7}
\end{align*}
$$

## B. Baryons

It is convenient to use the $\operatorname{SU}(3) d, f$ parametrization for the baryon matrix elements. With one exception, this is valid in our approach because the quark content of the wave functions and weak Hamiltonian respects the $\operatorname{SU}(3)$ algebra. Symmetry breaking associated with quark masses is taken into account in the overlap integrals. In our phase convention, the matrix elements for individual transitions are given by

$$
\begin{align*}
& \Lambda \rightarrow n: d+3 f, \\
& \Xi^{0} \rightarrow \Lambda: d-3 f, \\
& \Sigma^{+} \rightarrow p: \sqrt{6}(f-d),  \tag{8}\\
& \Sigma^{0} \rightarrow n: \sqrt{3}(d-f), \\
& \Xi^{0} \rightarrow \Sigma^{0}: \sqrt{3}(d+f), \\
& \Xi^{-} \rightarrow \Sigma^{-}:-\sqrt{6}(d+f)
\end{align*}
$$

and the $f, d$ parameters are

$$
\begin{aligned}
& \left\langle O_{1}\right\rangle: f=-d=-\sqrt{6} N^{3} N^{\prime} R^{-3}(A+B), \\
& \left\langle O_{i}\right\rangle: f=d=0 \quad(i=2,3,4), \\
& \left\langle O_{5}\right\rangle: f=\frac{4}{27} \sqrt{6} N^{3} N^{\prime} R^{-3}(3 A+7 B), \\
& \quad d=\frac{4}{9} \sqrt{6} N^{3} N^{\prime} R^{-3}(3 A-B), \\
& \left\langle O_{6}\right\rangle:\left\langle O_{6}\right\rangle=-\frac{3}{8}\left\langle O_{5}\right\rangle, \\
& \left\langle O_{7}^{(E)}\right\rangle: f
\end{aligned} \quad=\frac{1}{3} d,
$$

TABLE I. Numerical values of bag normalization factors and overlap integrals. The overlap integrals should each be multiplied by $10^{-3}$.

|  | $R=5.0 \mathrm{GeV}^{-1}$ | $R=3.3 \mathrm{GeV}^{-1}$ |
| :--- | :---: | :---: |
| $N$ | 2.27 | 2.27 |
| $N^{\prime}$ | 2.94 | 2.74 |
| $A$ | 3.38 | 3.43 |
| $B$ | 4.22 | 4.69 |
| $I_{E}$ | 1.51 | 1.69 |
| $I_{E}^{\prime}$ | 1.11 | 1.35 |
| $I_{M}$ | 1.43 | 1.48 |
| $I_{M}^{\prime}$ | 0.670 | 0.868 |

The matrix element $\left\langle O_{7}^{(M)}\right\rangle$ turns out not to have an exact $f, d$ parametrization for unequal quark masses. In this case, it is simplest to employ equal-mass kinematics and we find

$$
\left\langle O_{7}^{(M)}\right\rangle: f=-\frac{7}{3} d=-\frac{56}{9} \sqrt{6} g N^{4} R^{-2}\left(m_{s}+m_{d}\right) I_{M}
$$

In our numerical evaluation of the integral $I_{M}$, we take $m_{s}=m_{u}=0$. The effect of unequal quark masses on $I_{M}$ is roughly $20 \%$. The reader interested in a more accurate prescription than that given above can consult Ref. 11.
Observe that we are able to express all the above baryon matrix elements in terms of $\Delta I=\frac{1}{2}$ octet parameters because matrix elements of $O_{4}$, the only $\Delta I=\frac{3}{2} 27$-plet operator, vanish identically. ${ }^{5}$

## IV. NUMERICS

Our choice of input parameters is $m_{u}=m_{d}=0$, $m_{s}=0.280 \mathrm{GeV}, R=5.0 \mathrm{GeV}^{-1}$ for the baryons, and $R=3.3 \mathrm{GeV}^{-1}$ for the mesons. The corresponding bag normalization factors $N, N^{\prime}$ and overlap inte-

TABLE II. Selected matrix elements of $\Delta S=1$ nonleptonic operators. Each entry gives the matrix element for operator $\bar{O}_{i}$ defined as $G_{F} \sin \theta_{C} \cos \theta_{C} O_{i} / 2 \sqrt{2}$. Units are (a) $10^{-9} \mathrm{GeV}$ for the baryon matrix elements and (b) $10^{-8} \mathrm{GeV}^{2}$ for the meson matrix elements. The quark-gluon coupling constant $g$ is left unspecified.

| Mode | $\bar{O}_{1}$ |  | (a) Baryons $\bar{O}_{2,3,4}$ | $\bar{O}_{5}$ | $\bar{O}_{7}{ }^{(E)}$ | $\bar{O}_{7}{ }^{(M)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\Lambda \rightarrow n$ | -9.18 |  | 0.0 | 12.3 | -0.806g | 14.9 g |
| $\Xi^{0} \rightarrow \Lambda$ | 18.4 |  | 0.0 | -9.11 | 0.0 | -19.9g |
| $\Sigma^{+} \rightarrow p$ | -22.5 |  | 0.0 | 4.83 | 0.658 g | 20.3 g |
| $\underline{\Sigma s}^{0} \rightarrow \Sigma^{0}$ | 0.0 |  | 0.0 | 8.94 | 0.931 g | 5.75 g |
| Mode | $\bar{O}_{1}$ | $\bar{O}_{2,3}$ | (b) Mesons $\bar{O}_{4}$ | $\bar{O}_{5}$ | $\bar{O}_{7}^{(E)}$ | $\bar{O}_{7}^{(M)}$ |
| $K^{0} \rightarrow \pi^{0}$ | -0.203 | 0.405 | -0.811 | 6.92 | $-0.0537 \mathrm{~g}$ | $-3.37 \mathrm{~g}$ |

TABLE III. Comparison of experimental and theoretical parity-violating $|\Delta S|=1$ amplitudes. The hyperon and meson amplitudes are given in units of $G_{F} m_{\pi}{ }^{2}$ and $10^{-7} m_{K^{0}}$, respectively. The quantities in parentheses are the "left-right factorization" amplitudes described in the text. All entries are to be multiplied by the appropriate coefficient $c_{i}$ before comparison with experiment.

grals of Eqs. (3a)-(5b) take on the numerical values given in Table I. Note that each entry for the overlap integrals in Table I is to be multiplied by $10^{-3}$.

For the convenience of the reader, we summarize certain meson and baryon matrix elements of $H_{W}$ in Table II. Incidentally, in view of the strong cancellation between integrals $A, B$ in $\langle\pi| O_{i}|K\rangle$ ( $i=1,2,3,4$ ), we caution the reader that this effect (a consequence of helicity suppression ${ }^{5}$ ) renders the exact magnitude and even sign of the particular combination $A-B$ uncertain. In Table III, we go beyond the bag model and display the result of using PCAC (partial conservation of axial-vector current) to connect the calculated matrix elements with experimental $K \rightarrow \pi \pi$ and $S$-wave hyperon-de-
cay transitions. Although the latter interpolation is generally conceded to be relatively momentum independent, the former is not. We employ here the plausible but by no means unique formiof Ref. 5 ; other approaches could conceivably lead to values differing by as much as a factor of 2 . Note that each entry in Table III is to be multiplied by the corresponding coefficient $c_{i}(i=1, \ldots, 7)$ before comparing theory to experiment. Finally, we point out the existence of additional contributions, the so-called "factorization diagrams," to the physical decay amplitudes. ${ }^{5}$ In the case of $O_{5}, O_{6}$ these factorization contributions are comparable in size to the "four-quark" integrals already computed and included in Table III under the column headings $\bar{O}_{5}^{(c)}, \bar{O}_{6}^{(c)}$.
${ }^{1}$ M. K. Gaillard and B. W. Lee, Phys. Rev. Lett. 33, 108 (1974); G. Altarelli and L. Maiani, Phys. Lett. 52B, 531 (1974).
${ }^{2}$ M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B120, 316 (1977); Pis'ma Zh. Eksp. Teor. Fiz. 22, 123 (1975) [JETP Lett. 22, 55 (1975)].
${ }^{3}$ For example, see the analysis of R. K. Ellis, Nucl. Phys. B108, 239 (1976).
${ }^{4}$ C. T. Hill and G. G. Ross, Nucl. Phys. B171, 141 (1980).
${ }^{5}$ J. F. Donoghue, E. Golowich, W. A. Ponce, and B. R. Holstein, Phys. Rev. D 21, 186 (1980). Other calculations of $\Delta S=1$ nonleptonic matrix elements using the bag model can be found in J. F. Donoghue, E. Golowich, and B. R. Holstein, Phys. Rev. D 12, 2875 (1975); 15, 1341 (1977); J. F. Donoghue and E. Golowich, ibid. 14, 1386 (1976); Phys. Lett. 69B, 437
(1977); H. Galie, D. Tadic, and J. Trampetic, Nucl. Phys. B158, 306 (1979).
${ }^{6}$ This point has been emphasized to us by Christopher Hill, private communication.
${ }^{7}$ N. Cabibbo, in High-Energy Physics-1980, proceedings of the XXth International Conference on High Energy Physics, Madison, Wisconsin, 1980, edited by L. Durand and L. G. Pondrom (AIP, New York, 1981).
${ }^{8} \mathrm{We}$ have removed the $R$ dependence from $N$.
${ }^{9}$ J. F. Donoghue and E. Golowich, Phys. Lett. 69B, 437 (1977).
${ }^{10}$ See J. F. Donoghue and K. Johnson, Phys. Rev. D 21, 1975 (1980) for a discussion of the relation between bag and plane-wave states. For baryon states, we take such factors to have value one.
${ }^{11}$ J. F. Donoghue, E. Golowich, and B. R. Holstein, Phys. Rev. D 15, 1341 (1977).

