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Depicting the metabolism of Paracoccidioides brasiliensis during infection
by transcriptional and proteomic approaches
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Species in the Paracoccidioides spp. complex are the
causative agents of paracoccidioidomycosis (PCM), con-
sidered one of the most important systemic endemic
mycosis in Latin America. The genus Paracoccidioides
comprises 2 species, P. brasiliensis and P. lutzii with the
former being classified into 4 different phylogenetic
groups named S1, PS2, PS3 and PS4.1-3 More recently,
the S1 group was sub-divided into 2 lineages (S1a and
S1b).4 The development of the disease depends on sev-
eral factors dependent on both the host and the fungal
virulence. Once the fungal pathogen enters in contact
with the host, it should adapt itself to and override the
various microenvironmental factors to survive inside the
host. Fungal adaptation depends on its metabolism and
capability to produce and secrete several molecules that
play an important role in virulence. Among these mole-
cules, Paracoccidioides species produce enzymes that
participate in the most important pathways of central
metabolism, involving carbohydrates, lipids, amino acids
and nucleotides.5 In a previous study and using proteo-
mic analysis, it was found that after internalization of P.
brasiliensis into macrophages, a total of 308 differentially
expressed proteins were detected in this fungal pathogen.
The upregulated proteins included those related to
b-oxidation of fatty acids and amino acids’ catabolism,
as well as proteins associated with the alternative carbon
metabolism and enzymes involved in the gluconeogene-
sis pathway. As it concerns the downregulated proteins
included those related to glycolysis and protein
synthesis.6

Interestingly, it has been described that most of the
Paracoccidioides spp enzymes that participate in both
the glycolytic pathway and the tricarboxylic acid (TCA)
cycle including glyceraldehyde-3-phosphate dehydroge-
nase (GADPH), enolase (ENO), fructose-1–6-bisphos-
phate aldolase (FBA), triose phosphate isomerase (TPI),

malate synthase (MLS) and isocitrate lyase (ICL),
function as moonlight proteins, this is, they are multi-
functional proteins capable of accomplishing different
functions often unrelated.7 Thus, these glycolytic
enzymes allow Paracoccidioides spp binding to extracel-
lular matrix (ECM) proteins such as laminin, fibronectin,
fibrinogen, type I and IV collagens and plasminogen,
among others. These interactions are involved in the
adhesion and invasion process leading to Paracocci-
dioides infection.7

Paracoccidioides spp also has the capacity to defend
itself against the oxidative and nitrosative stress mole-
cules produced by the host�s immune cells especially
those produced by phagocytic cells (mainly macro-
phages). The oxidative and nitrosative stress are charac-
terized by production of reactive oxygen species (ROS)
and reactive nitrogen species (RNS), respectively. ROS
comprises superoxide anion radical (O2-�), hydroxyl
radical (�OH) and hydrogen peroxide (H2O2) while RNS
comprises nitric oxide (NO�) and peroxynitrite
(ONOO-), among others.8 These oxidative and nitrosa-
tive molecules act on fungal cells through the inactiva-
tion of proteins, lipids and cellular enzymes inhibiting
respiration, and damaging the DNA and membranes
thus leading to the fungal death.6,9 Therefore, several
reports have been shown that Paracoccidioides spp has a
powerful antioxidant defense system that allows this
fungal pathogen to survive ROS and RNS production;
this system includes expression/production of several
enzymes such as catalases (CATs), superoxide dismu-
tases (SODs), alternative oxidase (AOX), cytochrome c
peroxidase (CCP) and thioredoxins (THX).6,10-13 The
important role in virulence of most of these detoxifying
molecules has been demonstrated in elegant studies
using knock-down or silenced P. brasiliensis strains
obtained by antisense RNA (aRNA) approaches both in
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vitro and in vivo assays.6,10-12 Moreover, Parente-Rocha
et al. using proteomic analysis after internalization of
P. brasiliensis into macrophages found upregulation of
proteins involved in the oxidative stress response such as
SODs, THX and CCP.6 Of note, all P. brasiliensis muted
strains obtained through the use of aRNA methodology
for SODs, AOX, CATs and CCP, showed diminished
survival into macrophages as well as in experimental
mouse models.6,10-12,14

Most of the vital processes undergone by the eukary-
otic cells such as cell cycle, survival, adhesion and prolif-
eration, among other processes, are governed by the
signals transduction that in turn are addressed by protein
phosphorylation at post-translational levels.15 Along
these lines, Chaves et al. investigated the influence of
phosphorylative events during the P. brasiliensis adapta-
tion to oxidative stress. These investigators used mass
spectrometry-based approaches and mapped 440 phos-
phorylation sites in 230 P. brasiliensis proteins finding
that phosphorylation at different sites determine the
fungal response to oxidative stress.16

Several proteases are secreted by Paracoccidioides spp
with some of them considered as virulence determinants
that allow to the fungus to disseminate in its host.
Among these molecules several have been described,
namely, fructose 1,6-bisphosphate aldolase that binds to
plasminogen and activates this into plasmin, which in
turn, activates the fibrinolytic activity and also degrades
ECM proteins, a fact that enables the fungus to adhere
and invade host cells.17 A secreted aspartyl protease
(PbSAP) has also been identified in P. brasiliensis.18

Aspartyl proteases constitute one of the 4 superfamilies of
proteolytic enzymes, which have also been found in
Candida albicans with at least 10 members identified,
with SAPs 1–7 being differentially expressed during infec-
tion.19,20 A serine-thiol protease with the capability to
degrade laminin, fibronectin, type IV-collagen and proteo-
glycans, has also been identified in P. brasiliensis.21,22

Of note, all the above reports using trasncriptomic or
proteomic analysis have been performed by means of in
silico or infected cell lines approaches. In this issue of
Virulence, the authors of the article entitled “Paracocci-
dioides brasiliensis presents metabolic reprogramming
and secretes a serine proteinase during murine infection”
developed a method for harvesting P. brasiliensis yeasts
from the lungs of infected mice to evaluate in vivo tran-
scriptional and proteomic profiles.23 A total of 594 differ-
entially expressed transcripts and 350 differentially
expressed proteins were annotated. As described before
by the same group,6 in the investigation presented in this
Virulence’s issue, authors confirmed the upregulated
expression of proteins related to metabolism including
glycolysis, detoxifying enzymes and repressed cell wall

biosynthesis in P. brasiliensis. Moreover, they also con-
firmed the upregulated expression of a serine protease,
an enzyme involved in the invasion and dissemination of
this fungal pathogen, shown to be secreted in vivo as
described by the functional analysis already per-
formed.22,23 In sum, this article confirmed previous
trasncriptomic and proteomic studies with the results
presented here providing a better understanding of Para-
coccidioides spp complex metabolism. Future studies
using methodologies to silence or delete specific coding
genes to obtain Paracoccidioides spp mutant strains, as
well as in vivo functional studies would reveal key
molecules that could be used as targets for developing
new therapeutic strategies in PCM.
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