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Matemáticas
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Simply Typed Lambda Calculus with Opposite

Types

Alejandro Pinilla Barrera∗

Abstract

In this article we present an extension of simply typed lambda calculus by in-
troducing the idea of opposite types developed by Agudelo-Agudelo and Sicard-
Ramı́rez (2021). The rules for these new types are based on the rules of a
fragment of the logic system presented by the same authors. Two of the main
properties of type systems are proven: The strong normalization theorem and
the Curry-Howard correspondence.

Keywords: type theory, opposite types, the Curry-Howard correspondence,
strong normalization.

1 Introduction

At the beginning of the twentieth century, Bertrand Russell shook the foun-
dations of mathematics by finding a paradox which could enter in the formal
systems of Frege, Cantor and Peano (Kamareddine, Laan, & Nederpelt, 2004).
The discover of Russell’s paradox implied that these formal systems were incon-
sistent, and therefore, they lost the meaning of what was true or what was false.
To avoid this drawbacks, first Russell (1903, 1908) and later with Whitehead
(1910, 1912) proposed the first type theory, the Ramified Type Theory (RTT),
which was strongly influenced by Frege’s concept of types (Kamareddine et al.,
2004).

RTT was characterized by having a double hierarchy: one of orders and
the other of types. However, this characterization had limitations such as the
requirement of the so-called reducibility axiom. Hence, the idea of ramified
types and the reducibility axiom were not fully accepted and received several
critics from: Zermelo (1908), Wiener (1914), Skolem (1922) and von Neumann
(1925) among others. For this reason, Ramsey (1926) (and independently Ack-
erman and Hilbert, 1928) proposed a simplification of RTT, the Simple Theory
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of Types (STT), which consisted of the removal of the hierarchy of orders and
the maintenance of the hierarchy of types. Subsequently, Church (1940) devel-
oped one of the most influential type theories using his λ-calculus and STT: the
simply typed λ-calculus (λ→). This theory was the starting point for developing
different type systems such as the Pure Type Systems (PTS) (Kamareddine et
al., 2004).

In 1934, Curry observed that a logical implication might be seen as a class
of functions, whereby, every proposition A ⊃ B could be interpreted as a func-
tion which took a proof of A as argument and returned a proof of B. In this
way, for every proof of a proposition A ⊃ B corresponds to a function of type
A→ B. This principle is known as Propositions As Types (PAT). However, the
correspondence is not merely between types and propositions, Curry and Feys
(1958) extended it to terms and proofs and left the indications to extend the
relation to a deeper level, i.e, between evaluation of terms and simplification
of proofs. This deepest level of the correspondence was showed explicitly by
Howard (1980) between the simply typed λ-calculus and intuitionistic natural
deduction (Wadler, 2015). Furthermore, he extended the correspondence to
quantifiers and dependent types. Therefore, the PAT principle is also known as
the Curry-Howard correspondence.

Thanks to the Curry-Howard correspondence, the Intuitionistic First Order
Logic (IL) can be formalized using type theory. Nevertheless, the mathematical
constructivism perspective has various objections to IL, in particular against

the definition of negation as ¬A def
= A ⊃⊥, where ⊥ represents the bottom

particle (or an unprovable statement), consequently ¬A can be interpreted as
the impossibility of deriving a construction for A. From the criticism of IL, the
following stand out: the Griss’s criticism (Heyting, 1971, p. 124):

Though agreeing completely with Brouwer’s basic ideas on the nature of
mathematics, he contends that every mathematical notion has its origin
in a mathematical construction, which can actually be carried out; if
the construction is impossible, then the notion cannot be clear.

which led him to propose a negationless intuitionistic mathematics (Griss, 1946);
and the Johansson’s criticism (Johansson, 1937) which points out that the ex
falso rule (a rule establishing that every formula could be derived from ⊥) can
not be generally accepted from the constructivist viewpoint, therefore, it should
be eliminated in IL (this system is known as minimal logic).

These and others objections against IL has motivated the development of
formal systems with more robust constructivist denials. For instance, Nelson
(1949) introduce a formal system, N1, for number theory in which falsity has
symmetric constructivist characteristics as the truth in IL. On the other hand,
López-Escobar (1972) come up with a first-order logic through a sequent cal-
culus called refutability calculus (RFC), where the rules for the negation of a
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compound formula A are defined based on the analysis of whether a construct c
serves as a refutation of A. With this system López-Escobar (1972) formalizes
number theory, using RFC as the underlying logic, obtaining a system known
as PN.

Based on the above considerations and in the intuitionistic type theory (con-
structive type theory or Martin Löf type theory), Agudelo-Agudelo and Sicard-
Ramı́rez (2021) obtained a type theory in which the negation, with constructive
properties (corresponding to those developed by Nelson and López-Escobar),
is formalized through a type constructor inside the theory which the authors
called opposite types. The inclusion of this constructor allowed them to derive
a paraconsistent1 type theory (PTT). On the other side, Kamide (2010) intro-
duces a type system for Nelson’s paraconsistent logic N4 and gives an sketch
of the proof for strong normalization, mentioning that the proof is almost the
same as the one presented in Joachimski and Matthes (2003).

Following the ideas of Agudelo-Agudelo and Sicard-Ramı́rez (2021) and
Kamide (2010), the objectives of this article are: to extend λ→ allowing oppo-
site types (this extension will be denoted by λ̄→), and to study two important
properties of it, the strong normalization theorem and the Curry-Howard cor-
respondence. For the former, since Kamide (2010) just provided a sketch of the
proof and λ̄→ is a fragment his type system, we are going to provide all the
details of the demonstration because we consider that the proof is not as trivial
as Kamide (2010) pointed out.

To achieve our goals, this article is structured as follows. In Section 2 we
present a fragment of the logic system introduced by Agudelo-Agudelo and
Sicard-Ramı́rez (2021). The rules for negation are going to be the basis for the
definition of opposite types. So, in Section 3, we introduce λ̄→. The Section 4
is dedicated to the strong normalization theorem and Section 5 to the Curry-
Howard correspondence. At the end of this article (Section 6), some conclusions
are presented. We hope these results will be helpful for future works.

2 A paraconsistent logic

Prawitz (1965) formalized Nelson’s constructible falsity, in Nelson’s constructive
logic N, by introducing a natural deduction system. On one hand, Agudelo-
Agudelo and Sicard-Ramı́rez (2021) considered a fragment of that system with-
out ⊥ and without the rule that connects intuitionistic negation and con-
structible falsity, which they called PL (paraconsistent logic). On the other
hand, Kamide (2010) worked with the natural deduction system adapted for
N4, a sublogic of N. Based on this ideas and due to the fact that we are study-

1The term paraconsistent refers to a type theory that allows the formalization of logically
inconsistent and non-trivial theories. Moreover, this corresponds to the notion of paraconsis-
tency in logic.
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ing an extension of λ→ with opposite types, we shall consider a fragment of the
Prawitz’s natural deduction system, specifically, a fragment of the system con-
sidered by Agudelo-Agudelo and Sicard-Ramı́rez (2021), just with the logical
constants for negation (¬) and implication (⊃). This system shall be denoted
by PL¬,⊃.

Definition 2.1 (Set of formulas). Let PV = {a, b, c, . . .} be an infinite set of
propositional variables. The set of formulas Φ is defined by:

• If a ∈ PV, then a ∈ Φ.

• If σ, τ ∈ Φ, then σ ⊃ τ ∈ Φ

• If σ ∈ Φ then ¬σ ∈ Φ.

which can be summarized by the following grammar:

σ, τ ::= a | σ ⊃ τ | ¬σ

where σ, τ ∈ Φ and a ∈ PV.

Definition 2.2 (Judgement, formal proof).

• A judgement is a pair, written Γ ⊢PL¬,⊃ φ (and read “Γ proves ϕ”),
consisting in a finite set of formulas Γ and a formula φ.

• A formal proof or derivation of Γ ⊢PL¬,⊃ φ is tree of judgements with root
Γ ⊢PL¬,⊃ φ and where each judgment is obtained from the application of
one of the derivation rules presented in Table 1.

Remark: We are going to simplify the notation for judgments, writing:

• φ1, φ2 ⊢PL¬,⊃ ψ instead of {φ1, φ2} ⊢PL¬,⊃ ψ.

• Γ,∆ instead of Γ ∪∆.

• Γ, φ instead of Γ ∪ {φ}.

• ⊢ instead of ⊢PL¬,⊃ .

Definition 2.3 (Derivation rules).
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∆ ⊢ σ If σ ∈ ∆ (Ax)
∆, σ ⊢ τ

(⊃ I)
∆ ⊢ σ ⊃ τ

∆ ⊢ σ ⊃ τ ∆ ⊢ σ
(⊃ E)

∆ ⊢ τ
∆ ⊢ σ ∆ ⊢ ¬τ

(¬ ⊃ I)
∆ ⊢ ¬(σ ⊃ τ)

∆ ⊢ ¬(σ ⊃ τ)
(¬ ⊃ E1)

∆ ⊢ σ
∆ ⊢ ¬(σ ⊃ τ)

(¬ ⊃ E2)
∆ ⊢ ¬τ

∆ ⊢ σ
(¬¬I)

∆ ⊢ ¬¬σ
∆ ⊢ ¬¬σ

(¬¬E)
∆ ⊢ σ

Table 1: Derivation rules for PL¬,⊃

3 Simply typed lambda calculus with opposite
types

Based on PL¬,⊃, an extension of λ→ is introduced via the Curry-Howard cor-
respondence, adding the so-called opposite types. This system will be denoted
by λ̄→. The system presented is constructed using five new term constructors:
pairs ( , ), projections π1 and π2, and identities Id and Id−1, in order to interpret
the rules in PL¬,⊃, following the ideas of Kamide (2010). It is also necessary
to point out that we adapt the definitions presented in Geuvers and Nederpelt
(2014) for λ̄→.

3.1 Terms and types

Definition 3.1 (The set T of types). Let B = {a, b, c, . . .} be the set of basic
types. The set of types T is defined by:

• If a ∈ B, then a ∈ T.

• If σ, τ ∈ T, then σ → τ ∈ T.

• If σ ∈ T, then σ ∈ T.

which can be summarized by the following grammar:

σ, τ ::= a | σ → τ | σ

where σ, τ ∈ T and a ∈ B.
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Definition 3.2 (The set ΛT of pre-typed λ-terms). Let V = {x, y, z, . . .} be the
set of infinite term variables. The set of pre-typed λ-terms ΛT is defined by:

• If x ∈ V, then x ∈ ΛT.

• If M,N ∈ ΛT, then MN ∈ ΛT.

• If x ∈ V has type σ ∈ T and M ∈ ΛT, then λx : σ.M ∈ ΛT.

• If M ∈ ΛT and N ∈ ΛT, then ⟨M,N⟩ ∈ ΛT.

• If M ∈ ΛT, then M π1 and M π2 ∈ ΛT.

• If M ∈ ΛT, then Id M ∈ ΛT and M Id−1 ∈ ΛT

which can be summarized by the following grammar:

M ::= x |MN | λx : σ.M | ⟨M,N⟩ |M π1 |M π2 | Id M |M Id−1

where M,N ∈ ΛT.

Definition 3.3 (Statement, declaration, context and judgment).

• A statement is of the form M : σ, where M ∈ ΛT and σ ∈ T. In such
statement, M is called the subject and σ the type.

• A declaration is a statement with a variable as a subject.

• A context is a list of declarations with different subjects.

• A judgement has the form Γ ⊢λ̄→
M : σ, with Γ a context and M : σ a

statement.

3.2 Derivation rules

Definition 3.4 (Derivation rules).
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Γ ⊢λ̄→
x : σ if x : σ ∈ Γ (Ax∗)

Γ, x : σ ⊢λ̄→
M : τ

(→ I)
Γ ⊢λ̄→

λx : σ.M : σ → τ

Γ ⊢λ̄→
M : σ → τ Γ ⊢λ̄→

N : σ
(→ E)

Γ ⊢λ̄→
MN : τ

Γ ⊢λ̄→
M : σ Γ ⊢λ̄→

N : τ̄
(→I)

Γ ⊢λ̄→
⟨M,N⟩ : σ → τ

Γ ⊢λ̄→
M : σ → τ

(→E1)
Γ ⊢λ̄→

M π1 : σ

Γ ⊢λ̄→
M : σ → τ

(→E2)
Γ ⊢λ̄→

M π2 : τ

Γ ⊢λ̄→
M : σ (

I
)

Γ ⊢λ̄→
Id M : σ

Γ ⊢λ̄→
M : σ (

E
)

Γ ⊢λ̄→
M Id−1 : σ

Table 2: Derivation rules for λ̄→

3.3 α-conversion and substitution

Definition 3.5 (α-conversion or α-equivalence, =α).

• (Renaming): If y /∈ FV (M)2 and y is not a binding variable in M , then
λx : σ.M =α λy : σ.Mx→y, where Mx→y denotes the result of replacing
every free occurrence of x in M by y.

• (Compatibility): IfM =α N , thenML =α NL,LM =α LN , ⟨M,L⟩ =α

⟨N,L⟩, ⟨L,M⟩ =α ⟨L,N⟩, M π1 =α N π1, M π2 =α N π2, Id M =α

Id N , M Id−1 =α N Id−1, and for any arbitrary z : σ, λz : σ.M =α λz :
σ.N .

• (Reflexivity): M =α M .

• (Symmetry): If M =α N , then N =α M .

• (Transitivity): If L =α M and M =α N , then L =α N .

Definition 3.6 (Substitution).

• x[x := N ] ≡ N

• y[x := N ] ≡ y

• (PQ)[x := N ] ≡ (P [x := N ])(Q[x := N ])

• ⟨P,Q⟩[x := N ] ≡ ⟨P [x := N ], Q[x := N ]⟩
2FV (N) denote the set of free-variables in N .
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• (P π1)[x := N ] ≡ P [x := N ] π1

• (P π2)[x := N ] ≡ P [x := N ] π2

• (Id P )[x := N ] ≡ Id P [x := N ]

• (P [x := N ] Id−1)[x := N ] ≡ P [x := N ] Id−1

• (λy : σ.P )[x := N ] ≡ λz : σ.(P z→y[x := N ]), if λz : σ.(P z→y is an
α-variant of λy : σ.P such that z /∈ FV (N)

3.4 β-reduction

Definition 3.7 (β-reduction →β). Let M,N,L ∈ ΛT. The β-reduction is
defined:

• (λx : σ.M)N →β M [x := N ].

• ⟨M,N⟩ π1 →β M .

• ⟨M,N⟩ π2 →β N .

• (Id M) Id−1 →β M .

• (Substitutivity): If M →β N , then M [x := L] →β N [x := L].

• (Compatibility): If M →β N , then LM →β LN , ML →β NL, λx :
σ.M →β λx : σ.N , L[x := M ] →β L[x := N ], M π1 →β N π1,
M π2 →β N π2, ⟨M,L⟩ →β ⟨N,L⟩, ⟨L,M⟩ →β ⟨L,N⟩, Id M →β Id N
and M Id−1 →β N Id−1

4 Strong normalization theorem

As we mentioned in the introduction, in spite of λ̄→ being a fragment of the
type system for Nelson’s paraconsistent logic N4 introduced by Kamide (2010),
where just a sketch of the proof for strong normalization theorem is given due
to the fact that the proof is almost the same as the one presented in Joachim-
ski and Matthes (2003) for λ→ and other systems, we are going to provide all
the details of the demonstration of the strong normalization theorem for λ̄→,
because we consider that the proof for this system is not as trivial as Kamide
(2010) pointed out.

The idea of the proof relies on the definition of a set SW which, as it will
be proved, is a subset of the set of all strongly normalizing terms and captures
all the legal terms. However, we need some preliminaries before defining the set
SW. The first step is to redefine ΛT in order to exhibit the leftmost outermost
reducible expression. Then, we are going to provide an alternative definition
for strongly normalizing terms which is equivalent to the usual one. After that,
we will prove that the set of all strongly normalizing terms corresponds to the
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well-founded part (Subsection 4.3) of the β-reduction. Finally, we will define
the set SW and proceed with the proof.

4.1 Alternative inductive characterization of ΛT

Before proceeding with the redefinition of ΛT, we need to define what we are
going to call eliminations.

Definition 4.1. We use Ei (i = 0, 1, ....) for eliminations, which are either
terms (M), projection-eliminations (π1, π2), or inverse-eliminations (Id−1). This
definition can be summarized by the following grammar:

Ei ::=M | π1 | π2 | Id−1

the term M is named elimination term.

Remark: The vector notation are going to apply for lists of terms and
multiple eliminations (following Joachimski and Matthes, 2003).

Definition 4.2 (Alternative inductive characterization of ΛT). Now, we can
alternatively characterize the set ΛT inductively by the following grammar:

M,N ::= x | x
→
M

→
E0 | λx : σ.M | ⟨M,N⟩ | Id M |M π1 | (λx : σ.M)N

→
E0 |

⟨M,N⟩ π1
→
E0 | ⟨M,N⟩ π2

→
E0 | (Id M) Id−1

→
E0

where M,N ∈ ΛT.

This characterization differs from the first one in the definition of the ap-
plication, i.e, instead of considering the application in the usual form, MN , we
consider it distinguishing all the possible cases for M . Moreover, it exhibits the
leftmost outermost reducible expression (redex ). On the other side, it is neces-
sary to point out that in the literature there are other notations for π1, π2 and
Id−1, case in point, Sørensen and Urzyczyn (2006). However, due to the fact
that we are following the method of Joachimski and Matthes (2003) for proving
strong normalization, this notation eases the proof of the theorem.

4.2 Normalization

The definition of the strongly normalizing terms requires defining the concept
of a term in normal form. Instead of the usual definition of a term in normal
form which is the one that allows no further reduction, we are going to con-
sider the inductive one in Joachimski and Matthes (2003), which is based on
the alternative inductive characterization of ΛT (Definition 4.2). After doing
that, and following the ideas of the same authors, we will give an alternative
definition of the strongly normalizing terms and we will show that this definition
is equivalent to the usual one.
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Definition 4.3 (The set NF of normal forms). The set NF of typed terms in
normal form is inductively defined by the following grammar:

M,N ::= x | x
→
M

→
E0 | λx : σ.M | ⟨M,N⟩ | Id M

where
→
M

→
E0, N ∈ NF.

Remark: Notice how the alternative inductive characterization ofΛT uniquely
determines the canonical redex of non-normal terms.

Definition 4.4 (Strongly normalizing terms). M ∈ ΛT is strongly normalizing
(M ⇓) if ∀M ′

(M →β M
′
=⇒M

′ ⇓).

Remark: We will denote a non-strongly normalizing term by M ̸⇓.

Proposition 4.1. The latest definition is equivalent to the usual definition of
strong normalization: There is no infinite reduction sequence starting with M .

Proof. ⇒ Let M be strongly normalizing according to Definition 4.4, i.e,
M ⇓. We need to prove that there is no infinite reduction sequence starting
with M . For doing that, we are going to proceed by induction on the
possible reduction of M :

1. Basis: In this case, we have to show that all the terms in normal
form satisfy the property, i.e, there is no infinite reduction sequence
starting with them. But, this is trivially true since they do not admit
any reductions, so they do not have any reduction sequence starting
with themselves.

2. Step: We must prove that there is no infinite reduction sequence
starting with M assuming that for all M

′
such that M →β M

′
, M

′

does not admit any infinite reduction sequence starting with itself.
Nevertheless, it follows immediately since the length of all the reduc-
tion sequences starting with M is equal to the length of a reduction
sequence starting with M

′
(which are all finite by induction hypoth-

esis) plus one, for any M
′
such that M →β M

′
.

⇐ We are going to prove this statement by counter-reciprocal. Assume that
M is not strongly normalizing according to the Definition 4.4, i.e, M ̸⇓.
We need to prove that there is at least one infinite reduction sequence
starting with M . Due to M ̸⇓, there is M

′
such that M →β M

′
and

M
′ ̸⇓. Again, since M

′ ̸⇓, there is M
′′
such that M

′ → M
′′
and M

′′ ̸⇓.
This leads to the following reduction sequence:

M →β M
′
→β M

′′

Continuing with the same process, we can construct an infinite reduction
sequence starting with M .

■
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4.3 The well-founded part of the β-reduction

In this subsection, we are going to introduce the concept of the well-founded
part of a binary relation ≻ on a fixed set H, in order to prove that the set
of all strongly normalizing terms corresponds to the well-founded part of the
β-reduction.

Definition 4.5 (≻-Progressive). X ⊆ H is ≻-progressive (Prog≻(X)) if and
only if ∀x ∈ H(∀y(x ≻ y =⇒ y ∈ X) =⇒ x ∈ X).

Definition 4.6 (Well Founded part (WF)).

WF≻ := ∩{X ⊆ H|Prog≻(X)}

Definition 4.7 (Properties of WF≻).

1. The definition of the well-founded partWF≻ yields the schema Prog≻(X) =⇒
WF≻ ⊆ X of accessible part induction.

2. WF≻ is ≻-progressive itself.

Remark: In the case of the β-reduction:

• X ⊆ ΛT is →β-progressive if and only if ∀M ∈ ΛT(∀M
′ ∈ ΛT(M →β

M
′
=⇒M

′ ∈ X) =⇒M ∈ X).

• WF→β
:= ∩{X ⊆ A|Prog→β

(X)}.

• Prog→β
(X) =⇒WF→β

⊆ X.

• WF→β
is →β-progressive itself.

Proposition 4.2.
WF→β

= {M ∈ ΛT|M ⇓}

Proof.

• (⊆): We just have to prove that Prog→β
({M ∈ ΛT|M ⇓}). However

{M ∈ ΛT|M ⇓} is progressive by Definition 4.4. Therefore, due to the
first property of WF→β

(Definition 4.7) we have the first inclusion.

• (⊇): Let M ∈ {M ∈ ΛT|M ⇓}. We need to prove that M ∈ WF→β
,

i.e, M ∈ ∩{X ⊆ ΛT|Prog≻(X)}. Let X ⊆ ΛT such that Prog→β
(X).

By reductio ad absurdum assume M /∈ X. Then, there is M
′
such that

M →β M
′
andM

′
/∈ X. SinceM

′
/∈ X, there isM

′′
such thatM

′ →β M
′′

and M
′′
/∈ X. This reasoning leads to the following reduction sequence:

M →β M
′
→β M

′′

Continuing in this way we can construct an infinitive reduction sequence
starting withM . However, the existence of the infinite reduction sequence
contradicts the fact that M ⇓. Thus, M ∈ X and therefore M ∈ WF→β

since X was chosen arbitrarily.

■
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4.4 The set SW

Definition 4.8 (The set SW). The set SW is inductively defined by the follow-
ing rules:

x ∈ SW (var0)

→
M

→
E0 ∈ SW

(var)

x
→
M

→
E0 ∈ SW

M ∈ SW
(abs)

λx : σ.M ∈ SW

M
→
E0 ∈ SW N

→
E0 ∈ SW

(pair red1)

⟨M,N⟩ π1
→
E0 ∈ SW

M [x := N ]
→
E0 ∈ SW N ∈ SW

(appl)

(λx : σ.M)N
→
E0

M
→
E0 ∈ SW N

→
E0 ∈ SW

(pair red2)

⟨M,N⟩ π2
→
E0 ∈ SW

M,N ∈ SW
(pair)

⟨M,N⟩ ∈ SW

M ∈ SW
(neg)

Id M ∈ SW

M
→
E0 ∈ SW

(neg red)

(Id M) Id−1
→
E0 ∈ SW

Table 3: Derivation rules for SW

Remark: Notice that each of the rules defining SW corresponds to one of the
grammar rules defined in the alternative inductive definition of ΛT (Definition
4.2). Additionally, it is clear that NF ⊆ SW.

Lemma 4.3. If L ≡ (λx : σ.M)N
→
E0 ∈ SW is derived from the appl rule and

the premises of it are strongly normalizing, then (λx : σ.M)N
→
E0 ⇓.

Proof. Assume that L ≡ (λx : σ.M)N
→
E0 ∈ SW is the derived from the appl

rule and the premises of it are strongly normalizing, i.e, M [x := N ]
→
E0, N ⇓.

Let us show that (λx : σ.M)N
→
E0 ⇓. For doing that, we are going to proceed

by induction on N ⇓. As Joachimski and Matthes (2003, footnote 18, p. 68)
mention, that induction on N ⇓ amounts to showing →β-progressivity of the
set:

A := {N | ∀M,
→
E0(M [x := N ]

→
E0 ⇓) =⇒ (λx : σ.M)N

→
E0 ⇓}

i.e, ∀N ∈ ΛT(∀N
′
(N →β N

′
=⇒ N

′ ∈ A) =⇒ N ∈ A). So, assume that
any one-step-reduct of N is in A. To prove that N ∈ A, we do induction on
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M [x := N ]
→
E0 ⇓, i.e, we are going to show →β-progressivity of the set:

B := {M [x := N ]
→
E0 |M [x := N ]

→
E0 ⇓=⇒ (λx : σ.M)N

→
E0 ⇓}

for all M,
→
E0. Assume T ≡ M [x := N ]

→
E0 and that any one-step-reduct of T

is in B. We must show T ∈ B. Clearly, T ⇓ because every one-step-reduct
of T is strongly normalizing since they belong to B. Then, we just need to

show that (λx : σ.M)N
→
E0 ⇓ proving that each of its one-step-reducts is strongly

normalizing (Definition 4.4):

• (λx : σ.M)N
→
E0 →β (λx : σ.M

′
)N

→
E0: In this case, note that T ≡ M [x :=

N ]
→
E0 →β M

′
[x := N ]

→
E0 by substitutivity, hence, by the second induction

hypothesis (→β-progressivity of B) the reduct (λx : σ.M
′
)N

→
E0 is strongly

normalizing.

• (λx : σ.M)N
→
E0 →β (λx : σ.M)N

′ →E0: In this case, T ≡ M [x := N ]
→
E0 →β

M [x := N
′
]
→
E0 by compatibility of the β-reduction, hence, by the second

induction hypothesis M [x := N
′
]
→
E0 ⇓. Thus, by the first induction hy-

pothesis (→β-progressivity of A) yields (λx : σ.M)N
′ →E0 ⇓.

• (λx : σ.M)N
→
E0 →β (λx : σ.M)N

→
E ′

0: In this case, by compatibility of β-

reduction, T ≡ M [x := N ]
→
E0 →β M [x := N ]

→
E ′

0, hence, by the second

induction hypothesis (→β-progressivity of B) (λx : σ.M)N
→
E ′

0 ⇓.

• (λx : σ.M)N
→
E0 →β M [x := N ]

→
E0: By assumption M [x := N ]

→
E0 is

strongly normalizing.

Since all the reducts are strongly normalizing, T ∈ B. Therefore, N ∈ A, and

finally, we can conclude that L ≡ (λx : σ.M)N
→
E0 ⇓. ■

Lemma 4.4.
SW ⊆WF→β

Proof. Let L ∈ SW. Let us proceed by induction on L.

1. Basis: The basis of the induction is the var0 rule and it is trivial since any
variable is a term in normal form and consequently is strongly normalizing.

2. Step: We need to prove L ⇓ assuming that all the premises showing L ∈
SW are strongly normalizing. We have the following cases:

(var) (L ≡ x
→
M

→
E0): Since each reduction on x

→
M

→
E0 must take place in

→
M

→
E0

and
→
M

→
E0 ⇓ because of the induction hypothesis (

→
M

→
E0 is the premise

of the var rule), then x
→
M

→
E0 ⇓.
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(abs) (L ≡ λx : σ.M): Each reduction on λx : σ.M occurs in M and M ⇓
due to the induction hypothesis (M is the premise of the abs rule),
we have λx : σ.M ⇓.

(appl) (L ≡ (λx : σ.M)N
→
E0): In this case, (λx : σ.M)N

→
E0 ⇓ by the Lemma

4.3.

(pair) (L ≡ ⟨M,N⟩): Since each reduction has to take place in M or in
N and both are strongly normalizing by the induction hypothesis,
⟨M,N⟩ ⇓.

(pair red1) (L ≡ ⟨M,N⟩ π1
→
E0): In this case, by the induction hypothesis M

→
E0 ⇓

and N
→
E0 ⇓ since they are the premises of the pair red1 rule. Then,

following the same idea as in the appl case (Lemma 4.3), we pro-

ceed by induction on M
→
E0 ⇓, i.e, we are going to prove the →β-

progressivity of the set:

C = {M
→
E0 |M

→
E0 ⇓=⇒ ⟨M,N⟩ π1

→
E0 ⇓}

for all M,
→
E0. So, assume T ≡ M

→
E0 and that every-one-step-reduct

of it is in C. We must show that T ∈ C. Clearly, T ⇓ due to
every one-step-reduct of it is strongly normalizing for belonging to

C. Therefore, we just need to prove that ⟨M,N⟩ π1
→
E0 ⇓ showing

that each of its one-step-reducts is strongly normalizing (Definition
4.4):

∗ ⟨M,N⟩ π1
→
E0 →β ⟨M,N⟩ π1

→
E ′

0: In this case, T ≡ M
→
E0 →β M

→
E ′

0

by compatibility of the β-reduction, hence, by induction hypoth-

esis (→β-progressivity of C) ⟨M,N⟩ π1
→
E ′

0 ⇓.

∗ ⟨M,N⟩ π1
→
E0 →β ⟨M ′

, N⟩ π1
→
E0: In this case, T ≡ M

→
E0 →β

M
′ →E0 by compatibility of the β-reduction, hence, by induction

hypothesis (→β-progressivity of C) ⟨M ′
, N⟩ π1

→
E0 ⇓.

∗ ⟨M,N⟩ π1
→
E0 →β ⟨M,N

′⟩ π1
→
E0: We have M

→
E0 and by assump-

tion M
→
E0 ⇓.

∗ ⟨M,N⟩ π1
→
E0 →β M

→
E0: By assumption M

→
E0 ⇓.

Since all the one-step-reducts are strongly normalizing, T ∈ C, and

thus, L ≡ ⟨M,N⟩ π1
→
E0 ⇓.

(pair red2) (L ≡ ⟨M,N⟩ π2
→
E0): Analogous to the previous case.

(neg) (L ≡ Id M): Clearly Id M ⇓ since every possible reduction happens
in M which is strongly normalizing.

(neg red) (L ≡ (Id M) Id−1
→
E0): In this case, by the induction hypothesis

M
→
E0 ⇓ since it is the premise of the neg red rule. Again, we are
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going to follow the same idea as in the appl and pair red1 rules,

i.e, we are going to proceed by induction on M
→
E0 ⇓ showing the

→β-progressivity of the set:

D = {M
→
E0 |M

→
E0 ⇓=⇒ (Id M) Id−1

→
E0 ⇓}

for all M,
→
E0. So, assume T ≡ M

→
E0 and that every one-step-reduct

of it is in D. Clearly T ⇓, because every one-step-reduct of it is
strongly normalizing for belonging to D. Therefore, we just need to

prove that (Id M) Id−1
→
E0 ⇓ by showing that every one-step-reduct

is strongly normalizing (Definition 4.4):

∗ (Id M) Id−1
→
E0 →β (Id M) Id−1

→
E ′

0: In this case, T ≡ M
→
E0 →β

M
→
E ′

0 by compatibility of the β-reduction, hence, by induction hy-

pothesis (→β-progressivity ofD)M
→
E ′

0 ⇓ and therefore (IdM) Id−1
→
E ′

0 ⇓.

∗ (Id M) Id−1
→
E0 →β (Id M

′
) Id−1

→
E0: In this case, T ≡ M

→
E0 →β

M
′ →E0 by compatibility of the β-reduction, hence, by induction hy-

pothesis (→β-progressivity ofD)M
′ →E0 ⇓ and therefore (IdM

′
) Id−1

→
E0 ⇓.

∗ (Id M) Id−1
→
E0 →β M

→
E0: By assumption M

→
E0 ⇓.

Since all the one-step-reducts are strongly normalizing, T ∈ D, and

therefore, L ≡ (Id M) Id−1
→
E0 ⇓.

Since for all cases L ⇓, we have proven the step part of the induction.

Due to induction principle, SW ⊆WF→β
. ■

4.5 Strong normalization proof

Before proceeding with the proof of the strong normalization theorem, we are
going to prove some lemmas.

Lemma 4.5. If L,N ∈ SW are legal, L ≡ y
→
M and

→
M [y := N ] ∈ SW, then

L[y := N ] ∈ SW.

Proof. We are going to proceed by induction on the length of
→
M .

• Basis:
→
M is void and therefore y[y := N ] ≡ N ∈ SW.

• Step: Assume that the statement holds for lengths up to n. Let us prove

that it holds when the length of
→
M is n+1. Therefore, we can decompose

→
M in

→
O (of length n) and P , i.e,

→
M ≡

→
OP . Because of

→
M [y := N ] ∈ SW

by hypothesis, therefore,
→
O[y := N ], P [y := N ] ∈ SW. Then, on one
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hand, since P [y := N ] ∈ SW, (zP )[y := N ] ∈ SW for a new variable z
by the var rule (note that (zP )[y := N ] ≡ zP [y := N ] since z is a new

variable). On the other hand, due to
→
O[y := N ] ∈ SW and its length

is equal to n, by the induction hypothesis, (y
→
O)[y := N ] ∈ SW. Then,

because of (y
→
O)[y := N ] ∈ SW, (zP [y := N ]) ∈ SW and the length of

zP [y := N ] is less than n, applying the induction hypothesis on P [y := N ]

yields (zP [y := N ])[z := (y
→
O)[x := N ]] ∈ SW. Finally, note that

(zP [y := N ])[z := (y
→
O)[y := N ]] ≡

(y
→
O)[y := N ]P [y := N ] ≡ (substitution of z)

(y
→
OP )[y := N ] ≡ (Definition 3.6)

(y
→
M)[y := N ] ≡

Therefore, we can conclude that (y
→
M)[y := N ] ∈ SW. Hence, by the

induction principle the statement has been proven.

■

Lemma 4.6. If L,N ∈ SW are legal, L ≡ y
→
M

→
E0 and (

→
M

→
E0)[y := N ] ∈ SW,

then L[y := N ] ∈ SW.

Proof. We are going to proceed by induction on the length of
→
E0:

• Basis:
→
E0 is void and therefore L ≡ y

→
M . By the Lemma 4.5, L[y := N ] ∈

SW.

• Step: Assume that the statement holds for lengths up to m. Let us prove

that it holds when the length of
→
E0 is m+1. Therefore, we can decompose

→
E0 in

→
E1 (of length m) and E2, i.e,

→
E0 ≡

→
E1E2. The following cases can be

distinguished:

– E2 is one of: π1, π2 or Id−1. In this cases, (y
→
M

→
E1E2)[y := N ] ≡

(y
→
M

→
E1)[y := N ]E2 by Definition 3.6. Therefore, (y

→
M

→
E1)[y := N ]E2 ∈

SW since the inductive hypothesis yields (y
→
M

→
E1)[y := N ] ∈ SW

because the length of
→
E1 is m.

– E2 = S. In this case, because (
→
M

→
E0)[y := N ] ∈ SW by hypoth-

esis, therefore, (
→
M

→
E1)[y := N ], E2[y := N ] ∈ SW, i.e, (

→
M

→
E1)[y :=

N ], S[y := N ] ∈ SW. Then, on one hand, since S[y := N ] ∈ SW,
(zS)[y := N ] ∈ SW for a new variable z by the var rule (note that
(zS)[y := N ] ≡ zS[y := N ] due to the fact that z is a new variable).

On the other hand, due to
→
M

→
E1[y := N ] and its length is equal to
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n, by the induction hypothesis, (y
→
M

→
E1)[y := N ] ∈ SW. Then, be-

cause of (y
→
M

→
E1)[y := N ] ∈ SW, zS[y := N ] ∈ SW and the length

of zS[y := N ] is less than n, applying the induction hypothesis on

S[y := N ] yields (zS[y := N ])[z := (y
→
M

→
E1)[y := N ]] ∈ SW. Finally,

note that

(zS[y := N ])[z := (y
→
M

→
E1)[y := N ]] ≡

(y
→
M

→
E1)[y := N ]S[y := N ] ≡ (substitution of z)

(y
→
M

→
E1S)[y := N ] ≡ (Definition 3.6)

(y
→
M

→
E1E2)[y := N ] ≡ (substitution of S)

(y
→
M

→
E0)[y := N ]

Thus, we can conclude that (y
→
M

→
E0)[y := N ] ∈ SW.

Because in all the cases the statement holds, the proof of the lemma has
been completed.

Hence, by the induction principle the statement has been proven. ■

Lemma 4.7. If L ∈ SW and N ∈ SW are legal, then LN ∈ SW and L[x :=
N ] ∈ SW.

Proof. We will do the proof by induction on the structure of L ∈ SW.

1. Basis: The basis step of the induction part refers to the var0 rule in the
Definition 4.8 and it is trivially true since yN ∈ SW (for all term variables
y), by the var rule.

The proof of y[x := N ] ∈ SW also follows immediately because if y ̸= x,
then y[x := N ] ≡ y; on the other hand, if y ≡ x, y[x := N ] ≡ N and
N ∈ SW.

2. Step: Assume that the proposition holds for all the premises in the deriva-
tion of L ∈ SW. We need to prove LN,L[x := N ] ∈ SW. The following
cases are possible:

(var) L ≡ y
→
M

→
E0: In this case, due to the inductive hypothesis

→
M

→
E0, N ∈

SW, and by the var rule LN ≡ y
→
MN ∈ SW.

To prove (y
→
M

→
E0)[x := N ] ∈ SW we will distinguish the following

cases:

∗ (y ̸≡ x): By the inductive hypothesis (
→
M

→
E0)[x := N ] ∈ SW.

Applying the var rule, we can conclude that y(
→
M

→
E0)[x := N ] ∈

SW and it is equivalent to (y
→
M

→
E0)[x := N ].
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∗ (y ≡ x): By the Lemma 4.6 (y
→
M

→
E0)[x := N ] ∈ SW.

(abs) L ≡ λy : σ.M : In this case M [y := N ] ∈ SW by the inductive
hypothesis for substitution since it is the premise of the abs rule.
Therefore, applying appl rule (λy : σ.M)N ∈ SW.

The proof of (λy : σ.M)[x := N ] comes from the fact that all the
substitutions occurs inM . By the inductive hypothesisM [x := N ] ∈
SW. Thus, by abs rule λy : σ.M [x := N ] ≡ (λy : σ.M)[x := N ] ∈
SW.

(appl) L ≡ (λy := σ.M)O
→
E0: Since M [y := O]

→
E0N,O ∈ SW by induction

hypothesis, then by the appl rule (λy := σ.M)O
→
E0N ∈ SW.

To prove ((λy := σ.M)O
→
E0)[x := N ] ∈ SW, consider the induction

hypothesis, i.e, (M [y := O[x := N ]]
→
E0)[x := N ], O[x := N ] ∈ SW.

Then, by the application of the appl rule, conclude (λy : σ.M [x :=

N ])O[x := N ]
→
E0[x := N ] ≡ ((λy : σ.M)O

→
E0)[x := N ] ∈ SW.

(pair) (L ≡ ⟨M,O⟩): Since ⟨M,O⟩ has a type of the form σ → τ and N : σ
and applications requires a function type only the substitution case
is possible. Then, due to M [x := N ], O[x := N ] ∈ SW by induction
hypothesis and all the substitutions in ⟨M,O⟩ take place in M and
O, the term ⟨M,O⟩[x := N ] ∈ SW.

(pair red1) L ≡ ⟨M,O⟩ π1
→
E0: By induction hypothesis M

→
E0N,O

→
E0N ∈ SW,

hence ⟨M,O⟩ π1
→
E0N applying the pair red1 rule.

In the substitution, again, by the induction hypothesis (M
→
E0)[x :=

N ], (O
→
E0)[x := N ] ∈ SW. Then, by the pair red1 rule (⟨M,O⟩ π1

→
E0)[x :=

N ] ≡ ⟨M [x := N ], O[x := N ]⟩ π1
→
E0[x := N ] ∈ SW.

(pair red2) L ≡ ⟨M,O⟩ π2
→
E0: Analogous to the previous one.

(neg) L ≡ Id M : Only the substitution case is possible. Since M [x :=
N ] ∈ SW, then Id M [x := N ] ≡ Id M [x := N ] ∈ SW.

(neg red) L ≡ (Id M) Id−1
→
E0: By induction hypothesis M

→
E0N ∈ SW. There-

fore, by the neg red rule (Id M) Id−1
→
E0N ∈ SW.

Since the induction hypothesis yields (M
→
E0)[x := N ] ≡ M [x :=

N ]
→
E0[x := N ] ∈ SW, then ((Id M) Id−1

→
E0)[x := N ] ≡ (Id M [x :=

N ]) Id−1
→
E0[x := N ] ∈ SW.

Thus, because the statement holds in all the cases, the step part of the
induction has been proven.
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By the induction principle the proof is finished. ■

Lemma 4.8. If L ∈ SW is legal, then L π1 ∈ SW and L π2 ∈ SW.

Proof. We will proceed by induction on the structure of L ∈ SW.

1. Basis: Since x ∈ SW (L ≡ x) due to the var0 rule of the Definition 4.8,
the application of the var yields L π1 ∈ SW and L π2 ∈ SW.

2. Step: Assume that the proposition holds for all the premises in the deriva-
tion of L ∈ SW. We need to prove L π1 ∈ SW and L π2 ∈ SW. Then, we
have the following cases:

(var) L ≡ x
→
M

→
E0: In this case, by the inductive hypothesis, we have that

→
M

→
E0 π1 ∈ SW. Hence, applying the var rule yields x

→
M

→
E0 π1. The

case for π2 is analogous.

(abs) L ≡ λx : σ.M : This case does not make sense due to the fact that π1
and π2 require that λx : σ.M has type α→ γ and this is impossible
since λx : σ.M has a function type.

(appl) L ≡ (λx : σ.M)N
→
E0: In this case, by the induction hypothesis

M [x := N ]
→
E0 π1 ∈ SW. Hence, by the appl rule (λx : σ.M)N

→
E0 π1 ∈

SW. The case for π2 is analogous.

(pair) L ≡ ⟨M,N⟩: In this case, is derived directly using the pair red1 rule
for π1. In the case of π2, we just need to apply the pair red2 rule.

(pair red1) L ≡ ⟨M,N⟩ π1
→
E0: in this case, the induction hypothesis yields

M
→
E0 π1 ∈ SW and N

→
E0 π1 ∈ SW. Hence, using the pair red1 rule,

we can conclude ⟨M,N⟩ π1
→
E0 π1 ∈ SW. The case for π2 is obtained

applying the pair red2 rule instead of pair red1 rule.

(pair red2) L ≡ ⟨M,N⟩ π2
→
E0: This case is analogous to the previous one.

(neg) L ≡ Id M : This case is not possible due to the fact that π1, π2
requires a type of the form α→ γ and L must have a type of the
form σ.

(neg red) L ≡ (Id M) Id−1
→
E0: In this case, the induction hypothesis allows us

to conclude M
→
E0 π1 ∈ SW. Therefore, (Id M) Id−1

→
E0 π1 ∈ SW by

the application of the neg red rule. For the case of π2, the proof is
analogous.

Since the statement holds for all the cases, the step part of the induction
has been proven.

By the induction principle the proof is finished. ■

Lemma 4.9. If L ∈ SW is legal, then L Id−1 ∈ SW
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Proof. We will proceed by induction on the structure of L ∈ SW.

1. Basis: Since x ∈ SW (L ≡ x) due to the var0 rule of the Definition 4.8,
the application of the var yields L Id−1 ∈ SW.

2. Step: Assume that the proposition holds for all the premises in the deriva-
tion of L ∈ SW. We need to prove L Id−1 ∈ SW. Then, we have the
following cases:

(var) L ≡ x
→
M

→
E0: In this case, by the inductive hypothesis, we have that

→
M

→
E0 Id−1 ∈ SW. Hence, applying the var rule yields x

→
M

→
E0 Id−1.

(abs) L ≡ λx : σ.M : This case does not make sense due to the fact that
Id−1 requires that λx : σ.M has type α and this is impossible since
λx : σ.M has a function type.

(appl) L ≡ (λx : σ.M)N
→
E0: In this case, by the induction hypothesis

M [x := N ]
→
E0 Id−1 ∈ SW. Hence, by the appl rule (λx : σ.M)N

→
E0 Id−1 ∈

SW.

(pair) L ≡ ⟨M,N⟩: This case does not make sense since pairs has types of
the form α→ γ and Id−1 requires a type of the form σ.

(pair red1) L ≡ ⟨M,N⟩ π1
→
E0: In this case, the induction hypothesis yields

M
→
E0 Id−1 ∈ SW and N

→
E0 Id−1 ∈ SW. Hence, using the pair red1

rule, we can conclude ⟨M,N⟩ π1
→
E0 Id−1 ∈ SW.

(pair red2) L ≡ ⟨M,N⟩ π2
→
E0: This case is analogous to the previous one.

(neg) L ≡ Id M : This case can be derived directly applying the neg red.

(neg red) L ≡ (Id M) Id−1
→
E0: In this case, the induction hypothesis allows us

to conclude M
→
E0 Id−1 ∈ SW. Therefore, (Id M) Id−1

→
E0 Id−1 ∈ SW

by the application of the neg red rule.

Since the statement holds for all the cases, the step part of the induction
has been proven.

By the induction principle the proof is finished. ■

Theorem 4.10 (Strong Normalization Theorem). All legal terms are strongly
normalizing.

Proof. Assume L is a legal term, then exists Γ and α such that Γ ⊢λ̄→
L : α.

Firstly, we are going to prove that all the legal terms belong to SW proceeding
by induction on the derivation of L, following the rules in Definition 3.4:

1. Basis: In this case L ≡ x (and α = σ) is derived from the assumption
that x : σ ∈ Γ. x : σ ∈ SW is followed by the var0 rule.
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2. Step: Assume that the statement holds for all the premises in the deriva-
tion of L. We have the following cases:

(→ I) In this case L ≡ λx : σ.M (and α = σ → τ) is derived from M : τ
in the context Γ, x : σ. Since M : τ ∈ SW by induction hypothesis,
then, applying the abs rule, λx : σ.M : σ → τ ∈ SW.

(→ E) L ≡MN (and α = τ) is derived from M : σ → τ and N : σ. By the
induction hypothesis M : σ → τ,N : σ ∈ SW. Hence, by Lemma 4.7
MN : τ ∈ SW.

(→I) L ≡ ⟨M,N⟩ (and α = σ → τ) is derived from M : σ and N : τ . By
the induction hypothesis M : σ,N : τ ∈ SW. By the application of
the pair rule, ⟨M,N⟩ : σ → τ ∈ SW.

(→E1) L ≡M π1 (and α = σ) is derived fromM : σ → τ . Hence, by Lemma
4.8, L ∈ SW.

(→E2) L ≡M π2 (and α = τ) is derived from M : σ → τ . Therefore, by the
Lemma 4.8, L ∈ SW.(

I
)
L ≡ Id M : σ in the context Γ is derived from M : σ. The induction
hypothesis yields M : σ ∈ SW, therefore, by the neg rule Id M : σ ∈
SW.(

E
)
L ≡ M Id−1 : σ in the context Γ is derived from M : σ. By the
Lemma 4.9, L ∈ SW.

By the induction principle, all the legal terms are in SW. Therefore, by the
lemma 4.3.1 all the legal terms are strongly normalizing since SW ⊆WF→β

. ■

5 Curry-Howard correspondence

As we mentioned in the introduction, the Curry-Howard correspondence has
three levels:

1. Propositions as types.

2. Proofs as terms.

3. Simplifications of proofs as reduction of terms.

In this section3, we are just going to show the first two levels of the correspon-
dence. For the third level, we will just provide the idea of the proof in this
system with β-reduction.

3The definitions and theorems of this section are based on Sørensen and Urzyczyn (2006).
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5.1 Propositions as types and proofs as terms

The proof for the first two levels of the Curry-Howard correspondence involves
the introduction of translation functions that allows us to interpret the types in
λ̄→ as propositions in PL¬,⊃ and vice versa. Once, we have defined these trans-
lation functions, we are going to proceed with the proof of the correspondence
using the induction principle.

Definition 5.1 (Translation functions: tr and tr−1). The translation function
(denoted by tr) is recursively defined by:

tr : T −→ PL¬,⊃

a 7→ a

σ → τ 7→ tr(σ) ⊃ tr(τ)

σ 7→ ¬tr(σ)

where a ∈ B and σ, τ ∈ T. Clearly, this function is bijective an its inverse
(denoted by tr−1) is recursively defined:

tr−1 : PL¬,⊃ −→ T
a 7→ a

σ ⊃ τ 7→ tr−1(σ) → tr−1(τ)

¬σ 7→ tr−1(σ)

where a ∈ PV and σ, τ ∈ Φ.

Definition 5.2 (Range, rg). Let Γ be a context in λ̄→. Then the range of Γ,
denoted by rg(Γ), is rg(Γ) = {σ | x : σ ∈ Γ}.

Theorem 5.1 (Curry-Howard correspondence).

1. If Γ ⊢λ̄→
M : φ in λ̄→, then ∆ ⊢ tr(φ) in PL¬,⊃, with tr(rg(Γ)) = ∆.

2. If ∆ ⊢ φ in PL¬,⊃, then Γ ⊢λ̄→
M : tr−1(φ) in λ̄→, for some term M and

context Γ with tr(rg(Γ)) = ∆.

Proof. 1. We are going to proceed by induction on the derivation of the
judgement J ≡ Γ ⊢λ̄→

M : φ.

1. Basis: In this case J is derived from the (Ax∗), i.e, J ≡ Γ ⊢λ̄→

x : φ and is obtained from x : φ ∈ Γ. Then, given that x : φ ∈ Γ
and tr(rg(Γ)) = ∆, we can conclude that tr(φ) ∈ ∆, and therefore,
applying the (Ax) rule of PL¬,⊃, ∆ ⊢ tr(φ).

2. Step: Assume that J is the final deduction of a derivation, and
suppose that the first part of the Theorem 5.1 is true for the premises
which have been used to conclude J . The following cases can be
distinguished:
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(→ I) In this case J ≡ Γ ⊢λ̄→
λx : σ.M : σ → τ is derived from

M : τ in the context Γ, x : σ; hence, we need to prove that ∆ ⊢
tr(σ) ⊃ tr(τ). Due to the inductive hypothesis ∆, tr(σ) ⊢ tr(τ).
Therefore, the rule (⊃ I) of PL¬,⊃ yields ∆ ⊢ tr(σ) ⊃ tr(τ).

(→ E) In this case J ≡ Γ ⊢λ̄→
MN : τ is derived from M : σ → τ

and N : σ; hence, we need to prove ∆ ⊢ tr(τ). By the inductive
hypothesis ∆ ⊢ tr(σ) ⊃ tr(τ) and ∆ ⊢ tr(σ). Then, using the
(⊃ E) rule of PL¬,⊃ yields ∆ ⊢ tr(τ).

(→I) In this case J ≡ Γ ⊢λ̄→
⟨M,N⟩ : σ → τ is derived from M : σ

and N : τ ; hence, we should prove ∆ ⊢ ¬(tr(σ) ⊃ tr(τ)). The in-
ductive hypothesis leads to ∆ ⊢ tr(σ) and ∆ ⊢ ¬tr(τ). Therefore,
applying the (¬ ⊃ I) rule of PL¬,⊃ yields ∆ ⊢ ¬(tr(σ) ⊃ tr(τ)).

(→E1) In this case J ≡ Γ ⊢λ̄→
M π1 : σ is concluded from M : σ → τ ;

hence, we need to prove ∆ ⊢ tr(σ). By the inductive hypothesis
∆ ⊢ ¬(tr(σ) ⊃ tr(τ)). Therefore, from the rule (¬ ⊃ E1) we can
conclude ∆ ⊢ tr(σ).

(→E2) This case is analogous to the previous one.(
I
)
In this case J ≡ Γ ⊢λ̄→

IdM : σ is derived fromM : σ; hence, it
is necessary to prove ∆ ⊢ ¬¬tr(σ). By the induction hypothesis,
∆ ⊢ tr(σ), therefore, using the (¬¬I) rule of PL¬,⊃ yields ∆ ⊢
¬¬tr(σ).(

E
)
This case is analogous to the previous one.

Thus, by the induction principle the first part of the theorem has been
proven.

2. The second part of the theorem will also be showed applying induction
on the judgment I ≡ ∆ ⊢ φ and considering Γ = {xi : tr−1(φi) | φi ∈
∆ and i = 1, 2, . . . n}, where n is the number of formulas in ∆.

1. Basis: In this case I is obtained from the (Ax) rule of PL¬,⊃, i.e,
φ ∈ ∆. Then, since tr(rg(Γ)) = ∆, there is a term variable x :
tr−1(φ) ∈ Γ. Hence, applying the (Ax∗) rule Γ ⊢λ̄→

x : tr−1(φ).

2. Step: Assume that I is the last conclusion of a derivation in PL¬,⊃
and that the second part of the Theorem 5.1 holds for all the premises
used to conclude I. We have the following cases:

(⊃ I) In this case I ≡ ∆ ⊢ σ ⊃ τ is derived from ∆, σ ⊢ τ ; therefore, it
is necessary to prove that there is a term L such that Γ ⊢λ̄→

L :
tr−1(σ) → tr−1(τ). By the inductive hypothesis there are a term
M and a variable x such that Γ, x : tr−1(σ) ⊢λ̄→

M : tr−1(τ).
Therefore, applying the (→ I) rule yields Γ ⊢λ̄→

λx : tr−1(σ).M :
tr−1(σ) → tr−1(τ).

(⊃ E) In this case I ≡ ∆ ⊢PL¬,⊃ τ is concluded from ∆ ⊢ σ ⊃ τ
and ∆ ⊢ σ; hence, we should prove that there is a term L such
that Γ ⊢λ̄→

L : tr−1(τ). Using the inductive hypothesis there
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are terms M and N such that Γ ⊢λ̄→
M : tr−1(σ) → tr−1(τ)

and Γ ⊢λ̄→
N : tr−1(σ). Therefore, by the (→ E) rule, we can

conclude that Γ ⊢λ̄→
MN : tr−1(τ).

(¬ ⊃ I) In this case I ≡ ∆ ⊢ ¬(σ ⊃ τ) is derived from ∆ ⊢ σ and
∆ ⊢ ¬τ ; hence, we need to prove that there is a term L such

that Γ ⊢λ̄→
L : tr−1(σ) → tr−1(τ). By the induction hypothesis

there are terms M and N such that Γ ⊢λ̄→
M : tr−1(σ) and

Γ ⊢λ̄→
N : tr−1(τ). Therefore, applying the (→I) yields Γ ⊢λ̄→

⟨M,N⟩ : tr−1(σ) → tr−1(τ).

(¬ ⊃ E1) In this case I ≡ ∆ ⊢ σ is concluded from ∆ ⊢ ¬(σ ⊃ τ); hence,
it is necessary to show that there is a term L such that Γ ⊢λ̄→

L : tr−1(σ). By induction hypothesis there is a term M such

that Γ ⊢λ̄→
M : tr−1(σ) → tr−1(τ). Therefore, using the (→E1)

rule, we can conclude that Γ ⊢λ̄→
M π1 : tr−1(σ).

(¬ ⊃ E2) This case is analogous to the previous one.

(¬¬I) In this case I ≡ ∆ ⊢ ¬¬σ is derived from ∆ ⊢ σ; hence, we need

to show that there is a term L such that Γ ⊢λ̄→
L : tr−1(σ). By

the induction hypothesis there is a termM such that Γ ⊢λ̄→
M :

tr−1(σ). Therefore, using the
(
I
)
yields Γ ⊢λ̄→

Id M : tr−1(σ).

(¬¬E) This is case is analogous to the previous one.

Thus, by the induction principle, the second part of the theorem has been
proven.

Since we have already proven both parts of the theorem, the proof is com-
pleted. ■

5.2 Is this an exact correspondence?

Talking about a correspondence, implies that the statement of the theorem
should be an equivalence, i.e, it should have the form of an exact bijective cor-
respondence between proofs and terms (Sørensen & Urzyczyn, 2006). However,
as the same authors point out, proofs can be annotated in various ways if we
interpret terms as annotated proofs. Moreover, they (Sørensen & Urzyczyn,
2006, p. 82) said:

[. . . ] the difference between terms and proofs is that the former carry
more information than the latter. The reason is that in logic, the pri-
mary issue is usually to determine provability of a formula [. . . ]. It does
not matter whether we use the same assumption twice or if we use two
different assumptions about the same formula. [. . . ]. On the contrary,
in lambda-calculus we can have many variables of the same type φ, and
this corresponds to making a difference between various assumptions
about the same formula.
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In spite of this facts, for the natural deduction system the exact correspondence
has been showed but just for closed terms and proofs with no free assump-
tions (Hindley, 1997). Nevertheless, if we want to extend the Curry-Howard
correspondence to arbitrary terms, we require a proof system with labeled free
assumptions, and even in this case, we would merely find out that “the result-
ing proofs, up to syntactic sugar, are. . . another representation of lambda terms”
(Sørensen & Urzyczyn, 2006, p. 83).

5.3 Simplification of proofs and reduction of terms

The first two levels of the Curry-Howard correspondence induce that there
should be a relation between reduction of terms and simplification of proofs.
The simplifications of proofs, better known as proof normalization, is an im-
portant issue in proof theory and has been studied independently by logicians
(Sørensen & Urzyczyn, 2006). It is interesting, then, to prove the correspon-
dence between these two processes. Although, in this article we are not going
to prove this correspondence, the idea behind the proof will be presented. For
doing that, we will define the so-called detours in logic proofs and the relation
of them with the redexes in λ-terms.

Definition 5.3 (Detours in PL¬,⊃). A pair consisting of an introduction step
followed by an elimination step (applied to the formula just introduced) is called
detour in PL¬,⊃.

All the possible detours in PL¬,⊃ are presented in table 4.

∆, σ ⊢ τ
(⊃ I)

∆ ⊢ σ ⊃ τ ∆ ⊢ σ
(⊃ E)

∆ ⊢ τ

∆ ⊢ σ ∆ ⊢ ¬τ
(¬ ⊃ I)

∆ ⊢ ¬(σ ⊃ ¬τ)
(¬ ⊃ E1)

∆ ⊢ σ

∆ ⊢ σ ∆ ⊢ ¬τ
(¬ ⊃ I)

∆ ⊢ ¬(σ ⊃ ¬τ)
(¬ ⊃ E2)

∆ ⊢ ¬τ

∆ ⊢ σ
(¬¬I)

∆ ⊢ ¬¬σ
(¬¬E)

∆ ⊢ σ

Table 4: Detours in PL¬,⊃
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These detours have a correspondence with the redexes in λ̄→ using the The-
orem 5.1:

Γ, x : tr−1(σ) ⊢λ̄→
M : tr−1(τ)

(→ I)
Γ ⊢λ̄→

λx : tr−1(σ).M : tr−1(σ) → tr−1(τ) Γ ⊢λ̄→
N : tr−1(σ)

(→ E)
Γ ⊢λ̄→

(λx : tr−1(σ).M)N : tr−1(τ)

Γ ⊢λ̄→
M : tr−1(σ) Γ ⊢λ̄→

N : tr−1(τ)
(→I)

Γ ⊢λ̄→
⟨M,N⟩ : (tr−1(σ) → tr−1(τ))

(→E1)
Γ ⊢λ̄→

⟨M,N⟩ π1 : tr−1(σ)

Γ ⊢λ̄→
M : tr−1(σ) Γ ⊢λ̄→

N : tr−1(τ)
(→I)

Γ ⊢λ̄→
⟨M,N⟩ : tr−1(σ) → tr−1(τ)

(→E2)
Γ ⊢λ̄→

⟨M,N⟩ π2 : tr−1(τ)

Γ ⊢λ̄→
M : tr−1(σ) (

I
)

Γ ⊢λ̄→
Id M : tr−1(σ) (

E
)

Γ ⊢λ̄→
(Id M) Id−1 : tr−1(σ)

Table 5: Redexes in λ̄→

Once we have showed the connection between redexes and its counterparts
in PL¬,⊃ (detours), we are able to proceed showing the counterpart for the
β-reduction in PL¬,⊃.

Definition 5.4 (Proof normalization and normal forms). The process of elim-
inating proof detours is called proof normalization, and a derivation with no
detours is said to be in normal form.

When we are talking about an exact Curry-Howard correspondence, espe-
cially for the third level of the correspondence, “It can be more informative to
write natural deduction proofs in the “traditional” way” (Sørensen & Urzyczyn,
2006, p. 82). So, we present the proof normalization rules in the “traditional”
way in the Table 6. In this style, instead of associate a set of assumptions to
every node of the derivation, we will write all the assumptions at the top, and
put in brackets the ones that have been discharged by the implication rule. We
also mark proofs by either (∗) or (+).
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(∗)
...
σ

(¬¬I)¬¬σ
(¬¬E)

σ

=⇒
(∗)
...
σ

(∗)
...
σ

(+)
...

¬τ
(¬ ⊃ I)

¬(σ ⊃ ¬τ)
(¬ ⊃ E1)σ

=⇒
(∗)
...
σ

(∗)
...
σ

(+)
...

¬τ
(¬ ⊃ I)

¬(σ ⊃ ¬τ)
(¬ ⊃ E2)¬τ

=⇒
(+)
...

¬τ

[σ]
...
τ

(⊃ I)
σ ⊃ τ

(∗)
...
σ

(⊃ E)
τ

=⇒

(∗)
...
σ
...
τ

Table 6: Rules for proof normalization in the “traditional” way

Notice that the rules for proof normalization, i.e, the rules for eliminating
detours in PL¬,⊃, correspond to the rules of β-reduction (Definition 3.7), i.e, the
rules of reducing redexes in λ̄→ (Table 7). This correspondence allow us to show
the deepest level of the Curry-Howard correspondence: proofs simplifications as
reduction of terms. Moreover, it is possible to prove that every proof can be
converted to a normal form due to every typed term is normalizing. In fact, the
order of eliminating detours is irrelevant since every typed term is also strongly
normalizing (Theorem 4.10).
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[x : σ]
...

M : τ
(→ I)

λx : σ.M : σ → τ

(∗)
...

N : σ
(→ E)

(λx : σ.M)N : τ

=⇒

(∗)
...

N : σ
...

M [x := N ] : τ

(∗)
...

M : σ

(+)
...

N : τ
(→I)

⟨M,N⟩ : σ → τ
(→E1)

⟨M,N⟩ π1 : σ

=⇒
(∗)
...

M : σ

(∗)
...

M : σ

(+)
...
τ

(→I)
⟨M,N⟩ : σ → τ

(→E2)
⟨M,N⟩ π2 : τ

=⇒
(+)
...

N : τ

(∗)
...

M : σ (
I
)

Id M : σ (
E
)

(Id M) Id−1 : σ

=⇒
(∗)
...

M : σ

Table 7: Rules for term normalization in λ̄→

6 Conclusions

In this article we have presented λ̄→, a extension of λ→ using opposite types.
The rules for the opposite types are defined based on the rules for negation in
PL¬,⊃. Therefore, it is not a surprise the Curry-Howard correspondence in its
three levels. Additionally, we have presented all the details for the strong nor-
malization theorem (Theorem 4.10), which does not follow immediately from
the proof made by Joachimski and Matthes (2003) as Kamide (2010) pointed
out. It has require a few more lemmas and, in some cases, the extension of the
proof is too different to the original one for λ→.

For future works, the extension of the idea of opposite types to more complex
systems, such as PTS, where we have dependent types, can be addressed. Also,
the possibility of applying the method of Joachimski and Matthes (2003) for
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strong normalization to other systems is an interesting issue.
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