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Abstract

The concept of open quantum system is very broad and it is related to the ability of measuring
only certain degree of freedoms of a particular system. Although this idea is relatively simple, the
separation between the system of interest, the degree of freedoms that are accesible experimentally,
and the reservoir, the degree of freedoms that are not accesible experimentally, is not always clear.
For instance, in molecular systems, electronic spectroscopy has access only to electronic degree of
freedoms so that the nuclear and vibrational degree of freedom become the reservoir, this makes
its description not trivial. This scenario leads to have non-trivial and structured reservoirs and
to develop powerful tools to analyze them. The hallmark of non-trivial and structured reservoirs
is the non-Markovian dynamics. By translating the Feynman and Vernon influence functional
approach into phase-space representation, we develop two theories of semiclassical evolution of
the Wigner function of the system of interest that incorporate non-Markovian dynamics and
highly non-trivial quantum effects such as non-locality of quantum mechanics: (i) We translate
the Caldeira-Leggett model into phase-space representation of quantum mechanics and (ii) we
consider the possibility of having non-linear baths and therefore, truly quantum reservoirs.

During the last forty years the study of energy loss and coherence in quantum systems has
been based on the Ullersma-Caldeira-Leggett model, a model that describes the environment of
quantum systems of interest as a collection of harmonic oscillators with classical evolution. We
constructed this model in the Wigner-Weyl representation of quantum mechanics and discuss
the classical nature of the evolution of the bath modes and the semiclassical evolution of the
central system. As an application of the semiclassical Wigner propagator, the non-Markovian
time evolution under the Morse potencial is analyzed. There, it is clear how decohering processes
shrink the propagator to smaller regions of phase space implying that the dynamics become more
local, i.e., more classical.

The current level of experimentation and control of physical systems have called into question
the validity of the model in, one hand, molecular systems (e.g. photosynthetic complexes immersed
in solvents, chemical systems in liquid phase or gas and manipulated with intense laser pulses)
and, in the other hand, solid state systems (e.g. Josephson junctions, spins in quantum dots
or "spinning ice"). Given the importance of these systems in the development of new quantum
technologies and in the understanding of quantum phenomena in mesoscopic systems, it has
become necessary to develop new models of the environment and efficient methodologies with
quantitative prediction power. However, some of them are artificial modifications of the Ullersma-
Caldeira-Leggett model without solid and clean physical support. Here we formulated a general
framework that allows the study of quantum correlations in quantum systems in the presence
of non-harmonic thermal baths (e.g. baths formed by strongly coupled diatomic molecules).
This formulation will allow a more precise and quantitative description of processes such as the
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Abstract

transport of excitons in photosynthetic complexes, the transfer of heat in solid state devices,
among others. Results clearly show the non-classical time dynamics of the bath modes. The
implementation of this particular theory remains, however, as a challenge.

Keywords

Wigner propagator, semiclassical physics, non-linearities, phase-space, non-locality.
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Abbreviations and Notation

DOF Degree(s) of Freedom.
PDF Probability density function.
S System.
B Bath.
SB System-Bath.
DO Displacement operator.
r,r̃ vectors in a 2f dimensional phase-space for the central system.
R,R̃ vectors in a 2F dimensional phase-space for the bath modes.
R,R̃ vectors in a 2(f + F ) dimensional phase-space for the universe.
r̆,R̆ Phase space points having units of (action)

1
2 .

J Symplectic matrix.
M Stability matrix.
E Eigenvector matrix of M.
�̂ Operator acting on a Hilbert space.
�W Weyl symbol (transform) of an operator �̂.
ρ̂ Density operator.
ρW Wigner function associated to ρ̂.
GW(r′′, t; r′, 0) Wigner propagator from point r′ at time 0 to point r′′ at time t.
G̃(γ, γ0) Fourier transform of the Wigner propagator GW.
γ, α, β Dual Fourier variables associated to phase-space variables.
Û , UW Unitary evolution operator and its associated Weyl symbol.
K(q′′, t′′; q′, t′) Feynman propagator from point q′ at time t′ to point q′′ at time t′′.
JW(r′′, t; r′, 0) Propagating function acting on the Wigner function of S.
FW [{r}, {r̃}, t] Influence functional in phase-space.
Rj(q

′′, t′′; q′, t′) Hamilton principal function.
S Action functional.
SvV Action functional in the van Vleck approximation.
φn Discrete-time action functional.
Φ Action functional in the van Vleck approximation of UW.
Aj Symplectic area.
Ai(r) Airy function.
Hj (rj) Energy of the classical trajectory j.
∧ Binary operation indicating a symplectic product among two phase-space vectors.
Dr,DR Measures in the path integral formalism.
γ(t) Dissipation kernel.
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Abbreviations

I(ω) Spectral density associated to the bath.
α(t), αR(t), αI(t) Noise correlation kernel together with its real and imaginary parts.
ξ̂±(t) Stochastic bath operators acting on the Hilbert spaces of B and SB.
ζ̂±(t) Stochastic bath operators acting on the Hilbert space of B.
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Chapter 1

Quantum mechanics in phase space

1.1 Introduction

The phase-space formulation of quantum mechanics has its roots in the classic work of E.
Wigner, where he introduced the phase-space distribution function in the derivation of quantum
corrections terms to classical thermodynamic averages [1]. H. Weyl, around the same time and
independently, made decisive contributions to laid out the foundations of this remarkable picture of
quantum mechanics [2]. Nonetheless, the full, self-standing theory was put together in a crowning
achievement by H. Groenewold and J. Moyal independently of each other [3–5].

The main tool for this formulation of the quantum theory is the phase-space distribution func-
tion. Although there are several kind of distributions that enables this formulation of quantum
mechanics, including those of Wigner, Glauber-Sudarshan, Husimi, Kirkwood, etc; from all them,
the Wigner distribution function is the only fundamentally associated to the Lie algebra structure
of quantum mechanics [2, 6, 7]. In this Wigner-Weyl formulation of the theory, every quantum
observable Â is represented by a real valued phase-space function A(p,q) via the Weyl transform.
Conversely, every real phase-space function A(p,q) represents some quantum observable Â via
Weyl quantization. Moreover, this correspondence is bijective [8], i.e., quantum mechanics can be
consistent and autonomously formulated in phase space, with c-number position and momentum
variables simultaneously placed on an equal footing, in a way that fully respects Heisenberg’s
principle [5]. This framework is equivalent to the Hilbert space approach of the theory in config-
uration space. However, the phase-space version provides a great amount of connections to the
formulation of statistical physics and, by extension, to classical mechanics. In this manner, it
appeals naturally to one’s intuition and can provide useful physical insights that cannot be easily
gained from other approaches [6].

Wigner function behaves like a quasi-probability density, in the sense that the expectation
values of the physical observables can be computed as in the classical case. However, the fact that
the Wigner function can take on negative values put strong limits to this interpretation linked
to probability. Nonetheless, the Wigner function satisfies a broad set of properties that makes it
easy to handle in calculations. For instance, it is a real-valued function which naturally admits
the mixed state representation which is not so better suited in standard wave mechanics. In Table
1.1 we can see some key conceptual differences between these two formulations of the quantum
theory that arise basically from the fact that wave mechanics belong to the projective Hilbert
space whereas the phase-space formulation does not.
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Wave mechanics Wigner p-s mechanics

Initial condition ψ(q, 0) ρW(p,q, 0)

Dynamics Feynman propagator Wigner propagator

Final evolution ψ(q, t) ρW(p,q, t)

Mixed states No Yes

Table 1.1: Wave mechanics vs. Wigner phase-space formulation

Finally, the dynamical evolution of the Wigner distribution can be formulated in terms either
of the Groenewold-Moyal equation [3,4], or by a non-local integral kernel known as Wigner prop-
agator [9]. It is precisely the latter framework the one which will be used throughout the present
work.

In this chapter, we shortly review the formulation of the Wigner distribution function and
the Weyl quantization scheme. A collection of properties fulfilled by this distribution and its
associated Wigner propagator are summarized. For a detailed description of these topics there
are several reviews available in the literature. Among them, see [6, 8, 10–13]

1.2 The Weyl-Wigner formalism

1.2.1 The ordering problem

The goal of the Wigner-Weyl formalism is to establish a bijective correspondence among phase-
space functions AW(r)1 and phase-space observables Â(r̂). The mathematical tool that satisfies
this requirements is the Weyl-Wigner transform: It is an invertible map between functions in the
quantum phase-space formulation and Hilbert space operators in the Schrödinger picture. Usually,
when we are transforming phase-space functions into operator-valued functions, this transform is
named Weyl transform and was introduced by Weyl [2]. On the other hand, when we are mapping
operators into functions in phase-space, this transform is called the Wigner transform [1].

In the special case of moving from vectorial functions on phase-space to operator functions in
Hilbert space, there must exist a mechanism that guarantees the correct ordering of the canonical
operators. To achieve this, while keeping the correspondence of a unique operator associate to a
fixed phase-space function, Weyl proposed in his celebrated paper [2], the following prescription:
Write down the double Fourier transform of the phase space function as

AW(p,q) =

∫
dudv α(u,v)ei(u·p+v·q). (1.1)

Then, the quantization appears as the replacement in the exponential of p→ p̂ and q→ q̂,

Â(p̂, q̂) =

∫
dudv α(u,v)ei(u·p̂+v·q̂). (1.2)

The coefficients α(u,v) of the Fourier expansion of AW(p,q) can be obtained by an inverse Fourier

1r = (p,q) is a vector in a 2f dimensional phase-space.



transform as
α(u,v) =

1

(2π)2f

∫
dpdqAW(p,q)e−i(u·p+v·q). (1.3)

It is possible to show that the Weyl quantization procedure is just the inverse of the operation that
goes from Hilbert space to phase-space and will be known as Wigner transform [8]. Nonetheless,
there is a non-trivial question that should be addressed by the Weyl quantization scheme: Is there
a unique way of mapping phase-space functions which are non-separable products of p and q? For
instance, since p̂ and q̂ do not commute, a classically well-defined product of the form pnqm can
be translated into a multitude of quantum operators that differ in the ordering of the factors of the
canonical operators. The most unbiased choice would treat all possible orderings on equal footing
by taking the average value of all the combinations. This special and important prescription is
called Weyl ordering or Weyl quantization. For a product of operators Â1Â2 . . . Ân, the Weyl
ordering is defined as the sum over all permutations P (i1, . . . , in) of the indices such that2 [14](

Â1Â2 . . . Ân

)
O

=
1

number of permutations

∑
P

Âi1Âi2 . . . Âin . (1.4)

There is an elegant method, for one single component operators, to construct the Weyl ordering.
It is based on the identity [14]

(up̂+ vq̂)n =
n∑
k=0

(
n

k

)
un−kvk

(
p̂n−kq̂k

)
O
. (1.5)

Thus, the (k+l)th power of up̂+vq̂ serves as the generating function for the Weyl product
(
p̂kq̂l

)
O,

if one differentiates with respect to the formal parameters u, v

(
p̂kq̂l

)
O

=
1

(k + l)!

(
∂

∂u

)k ( ∂

∂v

)l
(up̂+ vq̂)k+l . (1.6)

1.2.2 Weyl transform for products of canonical operators

As we have previously mentioned in the introduction, the Wigner-Weyl operations when going
from Hilbert space to phase-space and viceversa constitutes a bijection. Meanwhile, in the last
section we showed how to proceed from c-function into operator space by doing an appropriate
ordering. In the present section we want to address the issue of how to transform products of
the canonical quantum operators into phase-space. Taking advantage of the operator method
developed in appendix B, we have found a quite interesting way to calculate Weyl transforms of
products of pair of canonical operators in the form p̂mq̂n and q̂np̂m. Here we summarize these
results and leave the main derivation of these expressions for Appendix D.

2The subindex "O" stands for Weyl ordered product of operators, whereas "W" stands for Weyl symbol of an
operator.



(p̂mq̂n)W =

(
~
2i

)n dn

dPn

[
(p+ P )m exp

(
2i

~
qP

)]
P=0

(1.7)

=

(
~
2i

)n m∑
k=0

(
m

k

)
pm−k

dn

dPn

[
P k exp

(
2i

~
qP

)]
P=0

,

and

(q̂np̂m)W =

(
− ~

2i

)m dm

dQm

[
(q +Q)n exp

(
−2i

~
pQ

)]
Q=0

(1.8)

=

(
− ~

2i

)m n∑
k=0

(
n

k

)
qn−k

dn

dQm

[
Qk exp

(
−2i

~
pQ

)]
Q=0

.

1.2.3 The Weyl symbol of an operator

For an arbitrary operator Â(p̂, q̂), the Weyl symbol is formally defined as

AW(p,q) = TW[Â](p,q) = Tr[Â(p̂, q̂)d̂(p̂, q̂)], (1.9)

with p = (p1, p2, . . . , pf ) and q = (q1, q2, . . . , qf ). We are dealing with a general 2f -dimensional
multi-particle phase space in such a way that for each degree of freedom (DOF), we are considering
pairs of conjugate variables. The d̂(p̂, q̂) operator is defined, in terms of the displacement operator
T̂ (u,v) that generates the polynomial algebra of observables in quantum mechanics [7], as

d̂(p̂, q̂) =
1

(2π~)f

∫
dudv exp

{
i

~
(u · p + v · q)T̂ (−u,−v)

}
. (1.10)

See Appendix B for a set of properties fulfilled by these two operators [11].
If the operator Â(p̂, q̂) is written in a symmetrized form, its Weyl symbol will be obtained by

the simple substitution q̂ → q and p̂ → p. Particularly, this is true for all operators having the
structure M̂(p̂) + N̂(q̂); being the separable standard Hamiltonians the most relevant example.

The definition of the Weyl symbol for the operator Â(p̂, q̂) in Eq. (1.9) is basis-independent.
However, for practical calculations, it would be convenient to have it written in a basis-dependent
form. By choosing the standard coordinate basis, we can write the Weyl symbol as

AW(p,q) =

∫
du exp

{
− i

~
p · u

}〈
q +

u

2

∣∣∣ Â ∣∣∣q− u

2

〉
. (1.11)

A similar expression can be written in terms of the momentum representation.

1.2.4 The Wigner distribution function

The quantum state of a physical system is completely determined by the density operator ρ̂.
For the general case of a mixed state, it takes the form

ρ̂ =
∑
i

Pi |ψi〉 〈ψi| , (1.12)



with Pi > 0 the set of probabilities that indicates the fraction of the statistical ensemble being
described by a particular pure state present in the superposition. Therefore,

∑
i Pi = 1. As can

be easily checked from its definition, the density operator satisfies the Hermicity property ρ̂† = ρ̂,
which gives to it the status of a quantum observable. Additionally, the density operator satisfies
ρ̂2 ≤ 1, with the equality satisfied only by pure states. In this particular case, all but one of the
probabilities Pi are zero, giving place to a pure quantum state described by ρ̂ = |ψ〉 〈ψ|.

As long as ρ̂ completely describes the state of the system in the Schrödinger picture, the
natural question that arises is: which physical quantity would be its equivalent in the phase-space
version of the theory? The answer comes directly from Eq. (1.11). The Wigner function, i.e., the
version of ρ̂ in phase-space, is defined as the Weyl transform of the density operator

ρW(p,q) =

∫
du exp

{
− i

~
p · u

}〈
q +

u

2

∣∣∣ ρ̂

(2π~)f

∣∣∣q− u

2

〉
. (1.13)

This distribution function satisfies some interesting properties in phase-space. In Table 1.1 there
are summarized the most relevant of them, while in Appendix E they are formally proved.

The Wigner function takes on a very interesting form when the density operator ρ̂ represents
a general mixed state,

ρW(p,q) =
∑
i

Pi ρW,i(p,q), (1.14)

showing that the Wigner transform of a mixed state corresponds to a mixed Wigner function in
phase-space. On the other hand, when the system can be described by a pure state, the Wigner
function can be written as

ρW(p,q) =

∫
du exp

{
− i

~
p · u

}
ψ(q + u/2)ψ∗(q− u/2). (1.15)

This expression can be understood as an f -dimensional Fourier transform acting on the product
of two wave functions separated in their arguments by u [11].

Contrary to what one might think about this distribution, it does not behaves like a probability
density function (PDF) in phase-space. The concept of a joint probability at a (p,q) phase-space
point is not allowed in quantum mechanics due to the Heisenberg uncertainty principle. Even
more, one of the more prominent characteristics of the Wigner function lies in the fact that
it can take on negative values, completely ruling out its interpretation as a PDF. Nonetheless,
as can be seen in Table 1.2, the Wigner distribution allows for calculating expectation values of
physical observables just like the classical case where a proper PDF can be unambiguously defined.
This seeming PDF behavior, together with its intrinsic negativities, which gives it its quantum
characteristics, has put it into a pseudo-PDF status. With all of this in mind, the quantum
phase-space distribution function should therefore be considered simply a mathematical tool that
facilitates quantum calculations.

1.3 Properties of the Wigner function

The Wigner distribution function satisfies some interesting properties that can be proved from
its definition in Eq. (1.13). In Table 1.2 we summarize the most relevant properties fulfilled by



this function [15], whereas in Appendix E we present a complete derivation of them.

Wigner function is real and normalized in phase space

ρ∗W(p,q) = ρW(p,q),
∫

dpdqρW(p,q) = 1

Marginals of the Wigner function∫
dqρW(p,q) =

∑
f Pf |ψf (q)|2,

∫
dpρW(p,q) =

∑
f Pf |ψf (p)|2

Wigner function is bounded for pure states

|ρW(p,q)| ≤
(

2
h

)f
Overlap of two Wigner functions∫

dfpdfqρW,ψ(p,q)ρW,φ(p,q) = h−f |〈ψ|φ〉|2

Full overlap of a Wigner function with itself

If 〈ψ|ψ〉 = 1, then
∫

dfpdfqρ2
W(p,q) = h−f

Orthogonality of Wigner functions: they can be negative

If 〈ψ|φ〉 = 0, then
∫

dfpdfqρW,ψ(p,q)ρW,φ(p,q) = 0

Translational properties of the Wigner function

If ψ(q)→ ψ(q− q′) =⇒ ρW(p,q)→ ρW(p,q− q′)

If ψ(q)→ ψ(q) exp
(

i
~q · p′

)
=⇒ ρW(p,q)→ ρW(p− p′,q)

Reflection symmetries of the of the Wigner function

Time reflection: ψ(q)→ [ψ(q)]∗ =⇒ ρW(p,q)→ ρW(−p,q)

Space reflection: ψ(q)→ ψ(−q) =⇒ ρW(p,q)→ ρW(−p,−q)

Operator expectation values

〈f(q̂)〉 =
∫

dqdpf(q)ρW(p,q)

〈g(p̂)〉 =
∫

dqdpg(p)ρW(p,q)

If Ĥ(p̂, q̂) = T̂ (p̂) + V̂ (q̂), 〈Ĥ〉 =
∫

dqdpH(p,q)ρW(p,q)

Linear superposition of Wigner functions for mixed states

If ρ̂ =
∑

i Pi |ψi〉 〈ψi|, ρW(p,q) =
∑

i PiρW,i(p,q)

Relation to the wave function in coordinate space

ψ (q) = 1
ψ∗(0)

∫
dfp exp

{
i
~p · q

}
ρW
(
p, q2

)
Table 1.2: Mathematical properties of the Wigner distribution function

1.4 Quantum dynamics in phase space

For an isolated system described by a time-independent Hamiltonian ĤS, the time evolution
of the operator ρ̂S(0) is determined by the Landau-von Neumann equation

i~
dρ̂S

dt
= [ĤS, ρ̂S]. (1.16)



Its formal solution can be written as the standard operator product

ρ̂S(t) = Û(t)ρ̂S(0)Û †(t), (1.17)

with Û(t) = exp
(
−itĤS/~

)
the unitary evolution operator. Although ρ̂S(t) in Eq. (1.17) formally

solves Eq. (1.16), it does not represent, at this stage, an explicit solution of the dynamics under
study. With the purpose of finding the desirable solution to ρ̂S(t), different theoretical approaches
has been formulated. Among these, we would like to highlight, on one hand, the Moyal equation
and, on the other hand, the Wigner propagator method. In the first case, the evolution of the
dynamics is studied by means of the equation [10]

∂

∂t
ρW(p,q, t) = −∂HW

∂p

∂ρW

∂q
+
∂HW

∂q

∂ρW

∂p
+

∑
n>2,odd

1

n!

(
~
2i

)n−1 ∂nHW

∂qn
∂nρW

∂pn
, (1.18)

where the first two terms correspond to the classical evolution of the PDF ρW(p,q, t), and the
remaining terms provide the quantum corrections. This equation can be shortened by the intro-
duction of the Moyal brackets [4],

∂

∂t
ρW(p,q, t) = {HW, ρW}M . (1.19)

In the second case, the propagation of the dynamics is formulated by means of an integral
kernel. Its mathematical form and its interpretation depends upon the formal construct that
supports the model. Thus, in configuration space is the Feynman propagator the integral kernel
that evolves the system [16–18], whereas in phase-space the dynamical evolutions corresponds
to the Wigner propagator. In the present work, we will be working under the latter approach.
Therefore, we will start from Eq. (1.17) by projecting this operator product into the coordinate
basis such that

ρS(q′′+,q
′′
−, t) =

∫
dq′+dq′−J

(
q′′+,q

′′
−, t; q

′
+,q

′
−, 0

)
ρS(q′+,q

′
−, 0), (1.20)

where
J
(
q′′+,q

′′
−, t; q

′
+,q

′
−, 0

)
= U

(
q′′+,q

′
+, t
)
U∗
(
q′′−,q

′
−, t
)
, (1.21)

defines the propagating function for the unitary case.

By applying the Weyl transform to Eq. (1.20), we are able to translate the dynamical evolution
of the coordinate density matrix into the evolution of the Wigner function in phase-space. Thus,

ρW(r′′, t) =
1

(2π~)f

∫
dvdv′dr′e

i
~ (p′·v′−p′′·v) (1.22)

× J
(

q′′ +
v

2
,q′′ − v

2
, t; q′ +

v′

2
, q′ − v′

2
, 0

)
ρW(r′, 0).



By means of this equation, we can give a first definition of the Wigner integral kernel as

GW(r′′, t; r′, 0) =
1

(2π~)f

∫
dvdv′e

i
~ (p′·v′−p′′·v) (1.23)

× U
(

q′′ +
v

2
,q′ +

v′

2
, t

)
U∗
(

q′′ − v

2
,q′ − v′

2
, t

)
,

such that
ρW(r′′, t) =

∫
dr′GW(r′′, t; r′, 0)ρW(r′, 0). (1.24)

As can be clearly seen from this expression, the Wigner integral kernel plays the role of a dynamical
propagator for the quantum state in phase-space. Thus, the Wigner propagator plays in phase-
space the same role that the Feynman propagator plays in configuration space, i.e., it determines
how a quantum state is propagated in time. Consequently, as in the Feynman path integral
theory, knowing the propagator will allows us to know the time evolution of a physical system in
phase-space. This picture, in turn, represents the set up for an enhanced path integral version of
quantum theory formulated completely in phase-space. Although there are different approaches
to a phase-space quantum mechanics description [6, 19–22], the one we are interested in for the
present work makes use of the path integral representation of the Wigner operator [9, 23, 24] to
describe the time evolution of quantum states.

Considering again the propagator in Eq. (1.23), we can see that it is related to the propagating
function by means of a double Fourier transform. Instead of taking the Fourier transform over the
propagating function, there is an alternate way to go to phase space and once there, obtain the
Wigner propagator. The key idea is to consider first the Weyl transform of the propagating func-
tion. As long as the system under consideration is closed, i.e., its DOF are not coupled to a heat
bath, the propagating function can be written as a product of propagators in configuration space.
Then, by applying to them, individually, the Weyl transform will give us the Weyl propagator as

UW(r, t) =

∫
du exp

(
− i

~
p · u

)
U
(
q +

u

2
,q− u

2
, t
)
. (1.25)

Consequently, we are now in position to apply the symplectic Fourier transform3 to the product
of the Weyl propagators to obtain the Wigner propagator as [25]

GW(r′′, t; r′, 0) =

∫
dr̃

(2π~)2
e

i
~ (r′−r′′)∧r̃UW

(
r̃′ + r̃′′ + r̃

2
, t

)
U∗W

(
r̃′ + r̃′′ − r̃

2
, t

)
. (1.26)

With the symplectic product defined, by means of the symplectic matrix J, as

r1 ∧ r2 = rT
1 Jr2, J =

(
0 1

−1 0

)
. (1.27)

It is relevant to point out the importance of the Weyl propagator as a tool from which is possible
to build a semiclassical approximation. Thus, as we will see in the next chapter, it will be the
starting point for the van Vleck semiclassical approximation of the propagator [26,27].

3See Eq. 4.33



1.5 Properties of the Wigner propagator

Some useful properties of the Weyl propagator can be deduced and then applied to characterize
the Wigner propagator (see appendix E). Also, the Wigner propagator itself satisfies some useful
properties that are summarized in Table 1.2 [9].

Wigner propagator at initial time

GW(r′′, 0; r′, 0) = δ(r′′ − r)

Composition Law

GW(r′′, 0; r′, 0) =
∫

d2fr′′′GW(r′′, t; r′′′, t′′′)GW(r′′′, t′′′; r′, 0)

Backward time propagator

GW(r′′, 0; r′, 0) = GW(r′,−t; r′′, 0) = GW(r′, 0; r′′, t)

GW is real

Since ρW(r1, . . . , rf ) ∈ R, then, GW(r′′, 0; r′, 0) ∈ R

Orthogonality∫
d2fr′′′GW(r′′, 0; r′, 0)GW(r′′′, 0; r′, 0) = δ(r′′ − r′)

Aditional properties

F For autonomous systems, GW generates a group parametrized by t

Table 1.3: Properties of the Wigner propagator

1.6 Path integral representation of the Wigner propagator

Taking Eq. (1.17) as the staring point, we want to transform it into a product of c-functions
depending upon the phase-space coordinates and momenta. Thus, the Weyl transform of the
product of three operators allows us to write Eq. (1.17) as4

ρW(r, t) =
1

(π~)2f

∫
dr1dr2dr3UW(r1)ρW(r2)U∗W(r3) (1.28)

× exp

[
2i

~
(r ∧ r3 + r2 ∧ r1)

]
δ[r + r2 − (r3 + r1)].

In order to build the propagator, let us consider a homogeneous partition of the time-like
interval of width ∆t = t/N . In this way, we can write down a short-time evolution for the Wigner
function in the interval [n− 1, n]∆t such that [23]

ρW(rn, n∆t) =
1

(π~)2f

∫
drn−1dr′ndr′′nUW(r′n)U∗W(r′′n) (1.29)

× exp

[
2i

~
(rn ∧ r′′n + rn−1 ∧ r′n)

]
× δ[rn + rn−1 − (r′′n + r′n)]ρW(rn−1, (n− 1)∆t).

4See Appendix B.



The Weyl symbols of the evolution operator can be calculated in the short-time regime by a Taylor
expansion up to first order in ∆t. In that spirit,

Û(∆t) = exp

(
− i

~
Ĥ∆t

)
=
∞∑
n=0

1

n!

(
− i

~
∆t

)n
Ĥn ≈ 1̂− i

~
∆tĤ +O(∆t2). (1.30)

Therefore,

UW(∆t) ≈
[
1̂− i

~
∆tĤ

]
W

= 1− i

~
∆tHW ≈ exp

(
− i

~
∆tHW

)
. (1.31)

Using this result in Eq. (1.29),

ρW(rn, n∆t) =
1

(π~)2f

∫
drn−1dr′ndr′′n exp

(
− i

~
∆tHW(r′n)

)
exp

(
i

~
∆tHW(r′′n)

)
(1.32)

× exp

[
2i

~
(rn ∧ r′′n + rn−1 ∧ r′n)

]
δ[rn + rn−1 − (r′′n + r′n)]

× ρW(rn−1, (n− 1)∆t)

=

∫
drn−1GW(rn, n∆t; rn−1, (n− 1)∆t)ρW(rn−1, (n− 1)∆t).

Then, we can introduce the Wigner propagator GW(rn, n∆t; rn−1, (n− 1)∆t) ≡ Gn,n−1
W as

Gn,n−1
W =

1

(π~)2f

∫
dr′ndr′′n exp

[
i

~
(
2rn ∧ r′′n + 2rn−1 ∧ r′n

)]
(1.33)

× exp

[
− i

~
(
HW(r′n)−HW(r′′n)

)
∆t

]
× δ[rn + rn−1 − (r′′n + r′n)].

At this point it is convenient to introduce the semi-sum and difference variables in the following
way: r̆n = (r′n + r′′n)/2, and r̃n = r′n − r′′n, such that the measure becomes dr′ndr′′n = dr̆ndr̃n.
Thus, by inverting the system defined by these expressions we obtain the relations r′n = r̆n + r̃n

2

and r′′n = r̆n − r̃n
2 . Therefore,

Gn,n−1
W =

1

(π~)2f

∫
dr̆ndr̃n exp

(
i

~
[2(rn−1 + rn) ∧ r̆n + (rn−1 − rn) ∧ r̃n]

)
(1.34)

× exp

(
− i

~

[
HW

(
r̆n +

r̃n
2

)
−HW

(
r̆n −

r̃n
2

)]
∆t

)
× δ (rn + rn−1 − 2r̆n) .

After the integration over the r̆n variable by means of the delta, we arrive to

Gn,n−1
W =

1

(2π~)2f

∫
dr̃n exp

(
i

~
[(rn−1 − rn) ∧ r̃n]

)
(1.35)

× exp

(
− i

~

[
HW

(
1

2
(rn + rn−1) +

r̃n
2

)
−HW

(
1

2
(rn + rn−1)− r̃n

2

)]
∆t

)
.



Let us now consider the definitions

r̄n =
1

2
(rn + rn−1), ∆rn = rn − rn−1, (1.36)

thus,

Gn,n−1
W =

1

(2π~)2f

∫
dr̃n exp

(
− i

~
[∆rn ∧ r̃n]

)
(1.37)

× exp

(
− i

~

[
HW

(
r̄n +

r̃n
2

)
−HW

(
r̄n −

r̃n
2

)]
∆t

)
.

This result applies only to the time interval ∆t. In order to obtain the complete propagator over
the interval [0, t], we must do the composition over N intervals with N − 1 integrations,

GN,0 =

(
N−1∏
n=1

∫
drn

)(
N∏
n=1

∫
dr̃n

(2π~)2f

)
(1.38)

× exp

(
− i

~

N∑
n=1

[
∆rn ∧ r̃n +

[
HW

(
r̄n +

r̃n
2

)
−HW

(
r̄n −

r̃n
2

)]
∆t

])
.

By taking the limit N →∞, the measures in the above expression becomes

lim
N→∞

(
N−1∏
n=1

∫
drn

)
lim
N→∞

(
N∏
n=1

∫
dr̃n

(2π~)2f

)
=

1

(2π~)f

∫
Dr

∫
Dr̃. (1.39)

Meanwhile, the phase of the exponential function takes its continuum form as

− i

~

∫ t

0

[
(ṙ ∧ r̃) +HW

(
r +

r̃

2

)
−HW

(
r− r̃

2

)]
ds.

Then, by setting up r(t) = r′′ as the final point of propagation of the dynamics at time t, and
r(0) = r′ as the initial point, we obtain the final form of the propagator as

GW(r′′, t; r′, 0) =
1

(2π~)f

∫
Dr

∫
Dr̃ exp

(
− i

~
S[{r}, {r̃}, t]

)
, (1.40)

with

S[{r}, {r̃}, t] =

∫ t

0

[
ṙ ∧ r̃ +HW

(
r +

r̃

2

)
−HW

(
r− r̃

2

)]
ds. (1.41)

Here, r(s) represents a possible trajectory in phase-space subject to the boundary conditions
r(0) = r′ and r(t) = r′′. On the other hand, r̃ represents the quantum fluctuations around the
classical trajectories. However, since there are not boundary conditions for r̃, we will say that
all the r̃ variables are unconstrained quantum fluctuations [23]. Regarding the physical meaning
of the action in Eq. (1.41), we can get a more clearer physical insight of it by considering a
Hamiltonian in the standard form HW(p,q) = 1

2mp2 + V (q). Thus, we obtain, by means of



Eq. (1.27) and the Hamilton equations of motion the following structure for the action

S[{r}, {r̃}, t] =

∫ t

0

[
V

(
q +

q̃

2

)
− V

(
q− q̃

2

)
− q̃

∂V (q)

∂q

]
ds. (1.42)

As can be seen from this expression, the propagator of the Wigner function, by means of the action,
contains the non-local expression V (q + q̃/2)−V (q− q̃/2), which clearly expresses the non-local
character of the quantum evolution provided by the fact that it depends on the potential at two
different positions. Then, this result can be linked to the scalar Aharonov-Bohm effect expressing
the fact that the quantum dynamics is fundamentally no-local, which is in sharp contrast with
the local evolution of the wave function governed by the Schrödinger equation [28–31]. Therefore,
the dynamical quantum non-locality is imprinted in the very generator of the quantum dynamics.
By going one step further, we can see what happens to the action when the system potential is
the one of the harmonic oscillator. In this linear case, for the particular case of one DOF, we have
Vhar (q + q̃/2) − Vhar (q − q̃/2) = mω2q̃q. Additionally, q̃dV/dq = mω2q̃q. Thus, for a harmonic
oscillator the quantum and the classical dynamics coincide because the action becomes null and
the Wigner propagator takes the mathematical structure of a Dirac delta along the classical
trajectory. Thus, deviations from the classical evolution are only expected for non-harmonic cases
as we will explore in the following chapters of the present work. Finally we can summarize the
above ideas by saying that the physical interpretation of the Eq. (1.41) is that the dynamical
non-local character of quantum mechanics, in this case within the phase-space, is provided by the
degree of non-linearity of the system.



Chapter 2

Semiclassical description of the dynamics

2.1 Introduction

In this chapter we discuss the semiclassical limit of the quantum Wigner propagator by means
of two different approaches: Firstly, we focus our attention on the path integral representation
of the propagator found in section Sec. 1.6. By applying the stationary phase approximation we
arrive to its semiclassical version. Secondly, we explore the perturbative expansion of the action
up to third order and calculate the mathematical structure that acquires the propagator when we
trace out over the quantum fluctuations around the classical trajectory. The main advantage of
exploring these two frameworks for the propagator lies in the fact that, even though there is no a
unique way to approach the semiclassical regime, all of the possible schemes offers different and
complementary perspectives of how the dynamics behaves within this regime.

2.2 van Vleck and Weyl Semiclassical propagators

There is no a unique method to approach the quantum dynamics in the semiclassical realm.
Historically, the starting point for a semiclassical analysis of the dynamics of a quantum system
was the approximation of the Feynman propagator in configuration space

K(q′′, t′′; q′, t′) ≡
〈
q′′
∣∣ e− i

~ Ĥt
∣∣q′〉 . (2.1)

In the quantum description of the time-evolution, this propagator represents a sum over all paths.
However, in the semiclassical realm, the sum only takes into account the set of classical paths,
labelled by j, starting from q′ and ending at q′′ in time t. Such approximation was first derived by
Van Vleck in 1928 [26]. However, Gutzwiller re-derived van Vleck’s approximation from Feynman’s
path integral, arriving to the mathematical expression [32]

K(q′′, t′′; q′, t′) =
∑
j

√
1

hf

∣∣∣∣det(∂2Rj(q′′, t′′; q′, t′)

∂q′′∂q′

)∣∣∣∣ exp

{
i

~
Rj(q

′′, t′′; q′, t′)− iµj
π

2

}
. (2.2)

Here, Rj(q′′, t′′; q′, t′) represents the Hamilton principal function along the j-th classical path [33],

Rj(q
′′, t′′; q′, t′) = −Hj (rj) t+

∫ q′′

q′
dq · pj(q), (2.3)
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whereas µj denotes the Maslov index of each trajectory [34, 35]. To obtain the semiclassical
approximation in phase space we will consider the Weyl symbol of the unitary operator

UW(r, t) =

∫
dfu exp

(
− i

~
p · u

)
K
(
q +

u

2
, t; q− u

2
, 0
)
. (2.4)

We note that from the coordinate propagator in Eq. (2.1) and its representation in the half-sum
and difference coordinates we obtain the relations q′′ = q + u/2 and q′ = q − u/2. From these
equations emerges a key property of the semiclassical propagation in the coordinate representation

q =
1

2

(
q′ + q′′

)
. (2.5)

Thus, the entry point for semiclassical analysis is an approximation for the coordinate propagator
K, and correspondingly, for its Weyl symbol, as a sum over all classical paths, labelled by j, that
start at q′ and end up at q′′ in time t [27].

By using the van Vleck approximation given in Eq. (2.2) into in Eq. (2.4), we are moving from
the semiclassical coordinate approximation to the phase-space description. With the purpose of
finding an analytical solution to this integration, we will use the method of stationary phase [9,27].
This procedure is justified by the fact that when the propagator is composed, and therefore,
integrated over a set of time intervals, the exponential function exp [(i/~)Rj ] becomes highly
oscillatory when ~ is small compared to Rj , which is particularly evident in the classical limit of
the propagator. As a consequence, the contributions to the integral mostly cancel. The only paths
along which the integrand varies slowly are the classical trajectories which makes the integral of
Rj stationary according to Hamilton variational principle. Furthermore, since the equations of
motion may have several solutions corresponding to distinct classical paths, one has to add the
contributions from all allowed classical paths, hereby making use of the superposition principle
[32,36].

The phase
Φ = Rj

(
q +

u

2
, t; q− u

2
, 0
)
− p · u. (2.6)

gives a contribution to the propagator along stationary trajectories that makes the action an
extremal. This is the case when the phase fulfill the variational equations

d

dt

(
∂Φ

∂u̇

)
− ∂Φ

∂u
= 0. (2.7)

Thus, as long as Φ does not depend explicitly on u̇,

∂Φ

∂u
= 0. (2.8)

Thus, with Φ = Rj
(
q + u

2 , t; q−
u
2 , 0
)
−p·u−~µj π2 , and the initial and final points of propagation

fixed by the coordinates (q′,q′′) and its conjugate momenta (p′,p′′), we obtain

∂Φ

∂u
=− ∂

∂u

[
~µj

π

2
+Hj (rj) t+ p · u−

∫ q′′+u
2

q′−u
2

dQ · pj(Q, Hj)

]
= 0, (2.9)



then,

p =
∂

∂u

∫ q′′+u
2

q′−u
2

dQ · pj(Q, Hj) (2.10)

=
∂

∂u

[∫ q′′+u
2

Q′
dQ · pj(Q, Hj)−

∫ q′−u
2

Q′
dQ · pj(Q, Hj)

]
,

where Q′ represents an arbitrary and fixed point. Thus,

p =
1

2

[
pj

(
q′′ +

u

2
, Hj

)
+ pj

(
q′ − u

2
, Hj

)]
, (2.11)

which represents the midpoint rule given, in short notation, by

p =
1

2

[
p′′ + p′

]
. (2.12)

Based on the symmetrical role of the coordinate and momentum in phase-space, this result was
already expected as long as the coordinates in Eq. (2.5) satisfies the same property. Thus, by
means of these two results, we have obtained the the celebrated midpoint rule: the semiclassical
Weyl propagator at position r contains contributions from all the classical paths j that, in time t,
link the phase-space points r′ and r′′, having r as the center of the straight line linking them [27].
In this manner, the semiclassical propagation must always satisfy

r =
1

2
[rj(t) + rj(0)] =

1

2

[
r′′j + r′j

]
. (2.13)

On the other hand, Almeida [11] describes the same relation from a deep and powerful cord
construction in which, starting from a phase-space point, it is possible to go to another one either
by a reflection around the center r = (r′′ + r′)/2 or by a translation along the chord u = r′′ − r′.
Even more, by means of compositions of these two operations, it is shown in this work how to link
r to u by means of a combined transformation of the aforementioned operations. In this spirit,
the theory developed in [11] establishes, by means of the transformation theory, the celebrated
midpoint relations such that the determination of the the chord is possible once the center is
known and conversely, by means of the representation of the canonical transformation involved.

Putting this midpoint rule into the phase of the propagator,

Φ =−Hj (rj) t− p · u +

∫ q+u
2

q−u
2

dQpj(Q) (2.14)

=− 1

2

(
p′′j + p′j

)
·
(
q′′j − q′j

)
−Hj (rj) t+

∫ q+u
2

q−u
2

dQpj(Q)

=Aj(r, t)−Hj (rj) t,

with Hj (rj) representing the energy of the path. As can be seen from this equation, the first term
is a pure geometrical term

Aj(r, t) = −1

2

(
p′′j + p′j

)
·
(
q′′j − q′j

)
+

∫ q+u
2

q−u
2

dQpj(Q) (2.15)
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Figure 2.1: Geometrical interpretation of the contribution of the symplectic area to the phase
propagator. r′ and r′′ represent the initial and final points of the propagation. The curved line
represent the j-th classical trajectory linking the aforementioned phase-space points. The straight
line linking r′ and r′′ represents the chord, with its midpoint, known as the center, the point where
we are evaluating the contribution of the classical trajectory to the propagator. The grey area
represents, together with the energy of the path in time t, the main contribution to the phase
propagator. See the main text for additional details.

The integral corresponds to the area under the curve that represents the classical trajectory. This
area is also bounded by the line p = 0 and initial and final conditions q′j , q′′j . The other term
represents the area of a trapezium with height given by q′′j − q′j , see Fig. 2.1. Then, as a result,
the geometrical term Aj(r, t) corresponds to a symplectic area that follows the chord rule, i.e.,
the area formed by the circuit that goes from r′j to r′′j along the classical path j and returns to
the starting point following the straight line that connects those border points [27]. Furthermore,
Eq. (2.14) represents the classical action contribution for the propagator made by every classical
path labelled by j.

Once the phase of the propagator has been obtained by the stationary phase method, we would
like to take a look to the prefactor in Eq. (2.2). Following Berry’s ideas, it is possible to show
that this term becomes [27]√

1

hf

∣∣∣∣det(∂2Rj(q′′, t′′; q′, t′)

∂q′′∂q′

)∣∣∣∣ =

√
22f

det(Mj + 1)
(2.16)

with Mj being the stability matrix of the trajectories. Therefore, the Weyl propagator in the van
Vleck- Gutzwiller approximation takes the form

UW(r, t) = 2f
∑
j

1√
det(Mj + 1)

exp

{
i

~
[Aj(r, t)−Hj (rj) t]− iµj

π

2

}
. (2.17)

There are some limits that can be explored out of this propagator. In particular, when t →



0 the couple of trajectories tends to become one. Additionally, Mj gets close to the identity
matrix, whereas the symplectic area goes to zero. In this way, the limit of the semiclassical Weyl
propagator becomes UW(r, t) → exp(−iH(r)t/~), which represents the appropriate short-time
approximation of the dynamics.

From Eq. (2.17) it is possible to calculate, by means of a double Fourier transform in phase-
space and some manipulations with the stability matrix [9], the Wigner propagator as

GW(r′′, t; r′, 0) =
2f

hf

∑
j

2 cos
(

1
~S

vV
j (r′′, r′, t)− µj π4

)
∣∣det

(
Mj+ −Mj−

)∣∣1/2 , (2.18)

where SvV
j represents the action in the van Vleck approximation, whereas Mj± are the stability

matrices for the couple of trajectories j± satisfying the midpoint rule.

2.3 From Phase-Space Path-Integrals to Semiclassical Wigner Prop-
agator

In this section we want to evaluate, under the semiclassical approximation, the path-integral
expression for the Wigner propagator of a closed system given in Eq. (1.40). This semiclassical
approximation is valid whenever the quantum fluctuations r̃ are small, or equivalently, when the
actions involved are large compared to Planck’s constant so that the later may be considered
to be small. Then, from a mathematical point of view, we have to evaluate the path integral
over exp (−iS[{r}, {r̃}, t]/~) for small ~. This can be done making use of the stationary-phase
approximation where the exponent has to be expanded around the extrema of the action [37].
Therefore, to calculate this extrema solutions, we have to find all the possible trajectories that
makes S stationary, identifying them as the classical solutions to the dynamics in phase space.
Once they are known, we can proceed to expand the action around them.

Since the action S[{r}, {r̃}, t] is a functional, its extremal are calculated by means of the
functional conditions

δS
δr

= 0,
δS
δr̃

= 0. (2.19)

From Eq. (1.41) we see that the action can be conveniently written as

S[{r}, {r̃}, t] =

∫ t

0
dsφ ({r}, {r̃}, s) , (2.20)

with
φ ({r}, {r̃}, s) = ṙ ∧ r̃ +HW

(
r +

r̃

2

)
−HW

(
r− r̃

2

)
. (2.21)

Thus, the variational derivatives in Eq (2.19) becomes the Euler-Lagrange equations over the
integral kernel φ as

d

dt

(
∂φ

∂ṙ

)
− ∂φ

∂r
= 0,

d

dt

(
∂φ

∂ ˙̃r

)
− ∂φ

∂r̃
= 0, (2.22)



which, in turn, can be simplified to

d

dt

(
∂φ

∂ṙ

)
− ∂φ

∂r
= 0,

∂φ

∂r̃
= 0. (2.23)

This set of four differential equations can be written explicitly as

ṗ =− ∂

∂q̃

[
HW

(
r +

r̃

2

)
−HW

(
r− r̃

2

)]
, (2.24)

q̇ =
∂

∂p̃

[
HW

(
r +

r̃

2

)
−HW

(
r− r̃

2

)]
,

˙̃p =− ∂

∂q

[
HW

(
r +

r̃

2

)
−HW

(
r− r̃

2

)]
,

˙̃q =
∂

∂p

[
HW

(
r +

r̃

2

)
−HW

(
r− r̃

2

)]
.

We can go one step further in the simplification of this set of equations by means of the change
of variables r± = r± r̃

2 . Inverting this system gives us r = (r+ + r−)/2 and r̃ = r+ − r−. Then,
by means of the chain rule ∂

∂r±
= 1

2
∂
∂r ±

∂
∂r̃ , we obtain, from Eq. (2.24)

ṗ± =− ∂

∂q±
HW (r±) , (2.25)

q̇± =
∂

∂p±
HW (r±) .

Following [23], let us consider the "symplectic gradient" operator ∇k = (JT)kl∂/∂rl, with k, l =

1, 2, . . . , 2f ; and summation over the repeated indices. In terms of this gradient, the above set of
equations in the r± variables takes the form

ṙ± = ∇HW(r±). (2.26)

Under this notation, the semiclassical approximation given by the equation set in Eq. (2.24) can
be compactly written as

ṙ =
1

2

[
∇HW

(
r +

r̃

2

)
+∇HW

(
r− r̃

2

)]
(2.27)

˙̃r =

[
∇HW

(
r +

r̃

2

)
−∇HW

(
r− r̃

2

)]
.

Remarkably, ~ does not at all appear in this approximation. However this is a general expected
result irrespective of the method used to arrive at the semiclassical version of the dynamics [23].

The set found in Eq. (2.27) consist of 2f first-order differential equations for 2f functions with
2f boundary conditions given by r(0) = r′, and r(t) = r′′. Unlike the initial value problem, the
question whether a solution does exist, or is unique, cannot be ansewerd readily, as usual in the
semiclassical approximation [23].

As can be seen from Eq. (2.27), the trajectory connecting the boundary points under the
trivial solution r̃ = 0, is precisely a classical one. Indeed, if we put this solution into Eq. (2.27),



we obtain

ṙ =∇HW(r), (2.28)

which represents the classical Hamilton equations of motion. This, in turn, implies that the set
of trajectories r± in Eq. (2.26), not only determine the propagation in phase space, but also are
solutions of the classical equations of motion. This is a special feature of the restricted picture we
are working on: as long as the system under study is closed, its dynamical evolution is unitary.
This will no longer be the case when we move into an open system dynamics with the introduction
of dissipation as in Chapter 4. In that more realistic case, the r± trajectories will behave quite
differently from the one we are discussing here. Specifically, in the special case of Ohmic damping,
the r± trajectories grow exponentially whereas the semi-sum behaves classically [25].

It is worth to mention that if the action possesses more than one extremum, one has to sum
over the contributions of all extrema unless one extremum can be shown to be dominant [37].
Thus, if the index j labels all the possible classical trajectories, Eq. (2.28) must be written as

ṙj =∇Hj(rj), (2.29)

with Hj (rj) representing the energy of the path. Then, by knowing the stationary trajectories,
the action should be expanded around the classical trajectories rj up to the first order contribution
in the fluctuations r̃. Moreover, the since the action is stationary at classical paths, we are obliged
to express the general path as [37]

rj(s) = rcl
j (s) + r̃j(s). (2.30)

Then, in this approximation, the path-integral expressions are replaced by summation over these
trajectories and weighted by the second derivatives of the action along these trajectories. It turns
out that those second-derivatives, written in a matrix array, can be related to the subtraction of
the stability matrices of r+ and r− as [9, 27]

det

(
∂2S
∂q̃2

∂2S
∂p̃2

∂2S
∂q2

∂2S
∂p2

)
=

1

4f
det

 ∂q′′+
∂q′+
− ∂q′′−

∂q′−

∂q′′+
∂p′+
− ∂q′′−

∂p′−
∂p′′+
∂q′+
− ∂p′′−

∂q′−

∂p′′+
∂p′+
− ∂p′′−

∂p′−

 =
1

4f
det(M+ −M−). (2.31)

Since the summation over trajectories contains terms j+j− and j−j+ we can guarantee that the
propagator is real and takes the final form as

GW(r′′, t; r′, 0) =
4f

hf

∑
j

2 cos
(

1
~S

vV
j (r′′, r′, t)− µj π4

)
∣∣det

(
Mj+ −Mj−

)∣∣1/2 , (2.32)

with µj representing the "index of inertia" associated to the matrix Mj+− = Mj+−Mj− . It can be
calculated by finding the eigenvalues of those matrices and computing the subtraction among the
number of positive and negative eigenvalues for each matrix. [24]. On the other hand, the action



Figure 2.2: Phase-space propagating function for unitary evolution under the Morse potential at
time t = 0, 63s. Parameter values are m = 0.5, ~ωmin = 0.0125, D = 1, a = 0.125. ωmin denotes
the frequency in the harmonic approximation, ωmin =

√
2a2D/m.

in the above phase is given by

SvV
j (r′′, r′, t) =

∫ t

0
ds
{

˙̄rj ∧ r̃j −
[
Hj+(rj+)−Hj−(rj−)

]}
, (2.33)

where ˙̄rj ≡
(
rj+ + rj−

)
/2 and r̃j ≡ rj+ − rj− .

2.4 Semiclassical Wigner propagator from path integrals

2.4.1 Discrete Wigner propagator

Let us consider a physical system in a two-dimensional phase space completely isolated from
its surroundings and under the influence of a time-independent potential V (q). This closed system
dynamics is governed by a Weyl-transformed Hamiltonian HW = T (p) + V (q). Our main interest
is to find the mathematical structure of the Wigner propagator of this system when the potential
becomes anharmonic due to the inclusion of non-linear terms in its Taylor expansion.

To begin with, we will use the discrete version of the Wigner propagator previously studied in
Sec. 1.6 (See Eq. 1.37)

GW(rn, n∆t; rn−1, (n− 1)∆t) ≡ Gn,n−1 =
1

(2π~)2

∫
dr̃n exp

(
− i

~
φn

)
, (2.34)

with r̃n = (p̃n, q̃n) the quantum fluctuations associated with the trajectory rn. The discrete action



φn is given by

φn =∆rn ∧ r̃n +

[
HW

(
r̄n +

r̃n
2

)
−HW

(
r̄n −

r̃n
2

)]
∆t (2.35)

=∆pnq̃n −
(

∆qn −
∆t

m
p̄n

)
p̃n +

[
V

(
q̄n +

q̃n
2

)
− V

(
q̄n −

q̃n
2

)]
∆t.

Under the shift rn → rn+ r̂n, and a Taylor expansion of the potential up to third order, we obtain

φn =

(
∆pn + ∆p̂n + V (1)(ˆ̄qn)∆t+ V (2)(ˆ̄qn)q̄n∆t+

1

2
V (3)(ˆ̄qn)q̄2

n∆t

)
q̃n (2.36)

−
(

∆qn + ∆q̂n −
∆t

m
(p̄n + ˆ̄pn)

)
p̃n +

1

24
V (3)(ˆ̄qn)∆tq̃3

n.

By means of the classical equations,

∆p̂n + V (1)(ˆ̄qn)∆t→ 0, ∆q̂n −
∆t

m
ˆ̄pn → 0, (2.37)

the Wigner propagator in Eq. (2.34) takes the form

Gn,n−1 =
1

(2π~)

∫
dp̃n exp

(
i

~

[
∆qn −

∆t

m
p̄n

]
p̃n

)
(2.38)

× 1

(2π~)

∫
dq̃n exp

(
− i

~

[
∆pn + V (2)(qcln )q̄n∆t+

1

2
V (3)(qcln )q̄2

n∆t

]
q̃n

)
× exp

(
− i

~

[
1

24
V (3)(qcln )∆tq̃3

n

])
.

If we introduce the change of variable

q′n =

[
V (3)(qcln )

8~
∆t

] 1
3

q̃n = α
1
3 q̃n,

and the definitions

p̆n =
[
mV (2)(qcln )

]− 1
4
pn, q̆n =

[
mV (2)(qcln )

] 1
4
qn, τ̆

− 1
3

n =
α−

1
3

~

[
mV (2)(qcln )

] 1
4
, (2.39)

we can write the Wigner propagator as

Gn,n−1 = τ̆
− 1

3
n δ

(
∆q̆n −

√
V (2)(qcln )

m
∆t ˘̄pn

)
Ai

(
τ̆
− 1

3
n

[
∆p̆n +

√
V (2)(qcln )

m
∆t˘̄qn

])
. (2.40)

From this propagator, we can write down the following system of equations

p̆n = p̆n−1 − θn ˘̄qn (2.41)

q̆n = q̆n−1 + θn ˘̄pn,

where we have used the notational simplification θn =

√
V (2)(qcln )

m ∆t. After solving it, we found



the solution (
p̆n

q̆n

)
=

1

4 + θ2
n

(
4− θ2

n −4θn

4θn 4− θ2
n

)(
p̆n−1

q̆n−1

)
. (2.42)

Consequently, the propagator in Eq. (2.40) takes the time-linearized form [38]

Gn,n−1 = τ̆
− 1

3
n δ (q̆n − (Mnr̆n−1)q̆)Ai

(
τ̆
− 1

3
n [p̆n − (Mnr̆n−1)p̆]

)
. (2.43)

2.4.2 Propagator composition in Fourier space

Let γn = (αn, βn) and γn−1 = (αn−1, βn−1). Then

G̃n,n−1(γn, γn−1) =
1

(2π)2

∫
dr̆ndr̆n−1Gn,n−1(r̆n, r̆n−1) exp (i [γn ∧ r̆n − γn−1 ∧ r̆n−1]) . (2.44)

By using the propagator in Eq. (2.40), we can perform all the integrations such that the propagator
in Fourier space takes the form

G̃n,n−1 =
4

4 + θ2
n

exp

(
− i

3
τ̆n

[
2αnθn − 4βn

(4 + θ2
n)

]3
)
δ

(
αn − αn−1 −

2θn
4 + θ2

n

[αnθn − 2βn]

)
(2.45)

× δ
(
βn−1 +

1

4 + θ2
n

[
4αnθn − 4βn + θ2

nβn
])

.

As we had reasoned before, in the limit ∆t→ 0, θ2
n � 1. Thus we can approach this propagator

to its simplest version

G̃n,n−1(γn, γn−1) = exp

(
i

3
τ̆nβ

3
n

)
δ(γn −Mnγn−1). (2.46)

In order to compute the composition of propagators, we make use of the Chapman-Kolmogorov
relation in Fourier space

G̃n+1,n−1 =

∫
dγnG̃n+1,nG̃n,n−1, (2.47)

such that

G̃N,0 =

(
N−1∏
n=1

∫
dγn

)
exp

(
i

3

N∑
n=1

τ̆nβ
3
n

)
N∏
n=1

δ(γn −Mnγn−1). (2.48)

By integrating out over the γn variables, and considering the limit ∆t→ 0 we obtain the following
structure for the propagator

G̃(γ, γ0) = lim
N→∞

exp

 i

3

N∑
n=1

τ̆n

n−1∏
j=0

Mn−j

 γ0

3

β

δ
γN −

N−1∏
j=0

MN−j

 γ0

 , (2.49)



After some manipulations, the matrix Mn, in the limit, takes the form

M(t) =

(
cos θ(t) − sin θ(t)

sin θ(t) cos θ(t)

)
, (2.50)

where

θ(t) =

∫ t

0

√
V (2)(qcl(s))

m
ds. (2.51)

With this result and the definition σ = τ̆n/∆t, the composite Wigner propagator takes the form

G̃(γ, γ0) = exp

(
i

3

∫ t

0
dt′
(
[M(t′)γ0]β

)3
σ(t′)

)
δ (γ −M(t)γ0) . (2.52)

Explicitly, after an expansion of the above phase and by using the auxiliary equations defined in
Eq. (G.1) of Appendix G, we obtain

G(r̆′′, t; r̆′, 0) =

∫
dγ0

(2π)2
exp

(
i[aα3

0 + bα2
0β0 + cα0β

2
0 + dβ3

0 +
[
M−1r̆′′ − r̆′

]
∧ γ0]

)
(2.53)

=
1

(2π)2

∫
dα0dβ0 exp

(
i
[
aα3

0 + dβ3
0 + β0

(
bα2

0 +
[
M−1r̆′′

]
p̆′′
− p̆′

)])
× exp

(
i
[
α0

(
cβ2

0 −
[
M−1r̆′′

]
q̆′′

+ q̆′
)])

,

with the notation
[
M−1r̆′′

]
p̆′′
,
[
M−1r̆′′

]
q̆′′

indicating the first and second components, respectively,
of the matrix product M−1r̆′′.

2.4.3 Recovering the Airy functions

Our next goal is to obtain a mathematical expression for the Wigner propagator in Eq. (2.53)
in terms of Airy functions. To start with, let’s write the phase of the propagator in the following
way

φ(t) =aα3
0 + bα2

0β0 + cα0β
2
0 + dβ3

0 − α0

([
M−1r̆′′

]
q̆′′
− q̆′

)
+ β0

([
M−1r̆′′

]
p̆′′
− p̆′

)
(2.54)

=aα3
0 + bα2

0β0 + cα0β
2
0 + dβ3

0 − α0Q+ β0P,

where we have use the short and simple notation Q =
[
M−1r̆′′

]
q̆′′
− q̆′, P =

[
M−1r̆′′

]
p̆′′
− p̆′. In

Appendix F we develop the details of a set of four successive linear transformations applied to the
above phase with the purpose of writing it in terms of Airy function. Subsequently, the propagator
takes the form

G(r̆′′, t; r̆′, 0) =
1

2λ4(2π)2

∫
dµ4dν4 exp

(
i
[
ρµ3

4 + (χ+ ξ)µ4 + ρν3
4 + (χ− ξ) ν4

])
. (2.55)



Thus, having successfully decoupled the multivariate cubic polynomial in Eq. (2.54), we obtain
the final version of the propagator as

G(r̆′′, t; r̆′, 0) =
1

2λ3(t)

1
3
√

(3ρ(t))2
Ai

(
χ(r̆′′, r̆′, t) + ξ(r̆′′, r̆′, t)

3
√

3ρ(t)

)
(2.56)

×Ai

(
χ(r̆′′, r̆′, t)− ξ(r̆′′, r̆′, t)

3
√

3ρ(t)

)
.

This is a quite interesting result. It states that for a closed system subject to a non-linear
potential, its dynamics in phase-space is governed by an explicitly non-local propagator in the
coordinates and the momentum. This aspect of the propagator has been acquired once we have
introduced a non-linear dynamics throughout the potential V (q). Fig. 2.2 shows the non-local
structure of the integral kernel for the Wigner function of the system, described as a single degree
of freedom under the Morse potential. As can be seen, there is an interference pattern over
significant regions of phase-space that shows how different regions contributes to the propagation
of the dynamics. Specially important has been the midpoint rule of Eq. (2.13) in the numerical
study of this propagator.



Chapter 3

Open quantum systems in phase-space

3.1 Introduction

In this chapter we construct the theory of quantum open systems in phase space. To achieve
this, we first make use of Marinov’s path integrals in phase-space to translate the Feynman and
Vernon approach into phase-space language to obtain the propagating function in phase-space
assuming a Ullersma-Caldeira-Leggett model for the bath. Moreover, starting from these results,
we will be able to calculate the dissipative version of the Wigner propagator presented in Sec. 1.6.
Finally, starting from this propagator, we will proceed to evaluate the path integrals by means of
semiclassical approximations.

3.2 Composite system propagator

We have already calculated the Wigner propagator for a quantum system evolving unitarily. In
this chapter we will be more interested on the study of composite interacting systems. Specifically
we will configure the composite system, from now on named the universe, in such a way that
we can define at initial time t = 0, on one hand, a central system (S) with f DOF and, on the
other hand, a bath reservoir (B) constituted by F non-interacting harmonic oscillators. At a later
time t > 0, the universe will consist not only of S and B, but all the interactions and correlations
created by the interaction among them as well.

The approach we will follow on this thesis will be to consider a position-position coupling
among S and the bath DOF. In this way, we will be extending the Ullersma-Caldeira-Leggett
model [39, 40] from configuration space into phase-space, preserving the physical setup rooted
in the study of the dissipation of the energy from the system to the bath and in the process
of decoherence while these correlations are translated into the reservoir in a mechanism widely
studied in the literature [41,42].

Let us define the physical structure of our universe1 by means the Hamiltonian

HW(r,R) = HW,S(r) +HW,B(R) +HW,SB(r,R). (3.1)

As we can see from this expression, we have split the dynamics into three parts: the system
dynamics alone, described by HW,S(r); the bath mode dynamics, given by HW,B(r), and, finally,

1We will be considering directly the Weyl symbols of the Hamiltonian operators involved in the universe dy-
namics. See [15] for details.
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the interaction among S and B determined by HW,SB(r,R). On the other hand, the points
r,R are defined as r = (p1, p2, · · · , pf , q1, q2, · · · , qf ) and R = (P1, P2, · · · , PF , Q1, Q2, · · · , QF )

respectively. Before giving a mathematical form to the aforementioned Hamiltonians, which will
be done within the next section, we will focus completely in the construction of a path integral
representation of the Wigner function for S and its propagating function. For this purpose, we
will use the already developed theory of open systems in the path integral formalism developed
in the configuration space [39,43,44].

As long as the universe described by Eq. (3.1) is closed, its dynamical evolution will be unitary.
Therefore, by means of the Wigner propagator already calculated in Eq. (1.40) we can write down
a universe propagator. For this purpose, we proceed to introduce the notation that we will be
using throughout the text. Let R = (r,R) be a vector in the composite phase-space. Explicitly,
R = (p1, p2, · · · , pf , P1, P2, · · · , PF , q1, q2, · · · , qf , Q1, Q2, · · · , QF ). Thus, by means of Eq. (1.40),
we can write the Wigner propagator for the universe as

GW(R′′, t;R′, 0) =
1

(2π~)(f+F )

∫
DR

∫
DR̃ exp

{
− i

~
S
[
{R}, {R̃}, t

]}
, (3.2)

where we have set the boundary conditions as R(0) = R′ and R(t) = R′′. The variable R̃
represents the whole set of quantum fluctuations around R(s), and, as in the single system
case, they do not have boundary restrictions [23] . In addition, DR and DR̃ denote an infin-
ity product of measures in the composite phase-space; whereas S[{R}, {R̃}, t] represents the
action of the universe. Being an extensive quantity, it can be written as S[{R}, {R̃}, t] =

SS[{r}, {r̃}, t] + SB[{R}, {R̃}, t] + SSB[{r}, {r̃}, {R}, {R̃}, t]. Meanwhile, as a single quantity,
it takes the mathematical form

S[{R}, {R̃}, t] =

∫ t

0
ds

[
Ṙ ∧ R̃+HW

(
R+

1

2
R̃
)
−HW

(
R− 1

2
R̃
)]

. (3.3)

Since we are mainly interested in the dynamics of the central system S under the influence of the
bath, we would like to find a mathematical description, in terms of path integrals, of S alone.
Thus, from this perspective, the propagator in Eq. (3.2) will not be the central object of our
discussion. Instead, as we will see below, once we integrate the bath DOF, we will obtain the
path integral representation of the Wigner function for S and its kernel of propagation, known as
the propagating function.

Let us begin by writing the Wigner function evolution for the universe. From Eq. (1.24) and
Eq. (3.2) we obtain

ρW(R′′, r′′, t) =

∫
dR′

(2π~)F
dr′

(2π~)f

∫
Dr

∫
Dr̃

∫
DR

∫
DR̃ (3.4)

× exp

{
− i

~

[
SS [{r}, {r̃}, t] + SB

[
{R}, {R̃}, t

]
+ SSB

[
{r}, {r̃}, {R}, {R̃}, t

]]}
× ρW(R′, r′, 0).

Here and in the following, we shall take t = 0 to correspond to the time at which the interaction
is switched on. For times t < 0 the system and environment are usually assumed to be com-



pletely uncorrelated2 and the Wigner function of the universe can be written as ρW(R′, r′, 0) =

ρW,S(r′, 0)ρW,B(R′, 0) [9,42,44]. Thus, by using this factorization of the S+B state and after some
manipulations, Eq. (3.4) takes the compact form

ρW,S(r′′, t) =

∫
dr′JW(r′′, t; r′, 0) ρW,S(r′, 0). (3.5)

On the left-hand side, ρW,S(r′′, t) stands for the Wigner function characterizing the state of S;
while on the right-hand side, the quantity JW(r′′, t; r′, 0) represents the propagating function that
allow us to evolve in time the Wigner function of the central system. In this way, J represents to
the dynamics of the state of S, what the Wigner propagator in Eq. (3.2) to the dynamics of the
universe.

The mathematical form of JW(r′′, t; r′, 0) can be extracted from the last two equations such
that

JW(r′′, t; r′, 0) =
1

hf

∫
Dr

∫
Dr̃ exp

{
− i

~
SS [{r}, {r̃}, t]

}
FW [{r}, {r̃}, t] , (3.6)

where

FW [{r}, {r̃}, t] =
1

hF

∫
dR′′

∫
dR′ ρW,B(R′, 0)

∫
DR

∫
DR̃

× exp

{
− i

~

[
SB

[
{R}, {R̃}, t

]
+ SSB

[
{r}, {r̃}, {R}, {R̃}, t

]]}
,

(3.7)

represents the influence functional in phase-space . This object comprises all the information of
the bath and the influence that it exerts on the central system. Thus, it plays a major role in the
description of open system dynamics and was originally formulated in configuration space [43].

The influence functional has been analytically calculated for baths having, at most, quadratic
potentials [44]. Moreover, there are scenarios where the coupling among the central system and
the bath modes is non-linear. In this scenario, there are models where approximations schemes
like a perturbation expansion of the action in the influence functional are mandatory [45].

Although, at this point we could be tempted to introduce semiclassical approximations for
the evolution of the dissipative system, e.g. considering stationary-phase approximation for the
influence functional JW(r′′, t; r′, 0) or the total Wigner propagator GW(R′′, t;R′, 0), it is very
premature because dissipation is achieved just when the number of DOF of the bath tends to
infinity. Otherwise what we will find again is the result for Hamiltonian systems derived in
Ref. [46]. For this reason, semiclassical limit will be discussed later in Sec. 3.4.3.

2Whenever the total density matrix of the universe factorizes into subsystem density matrices ρ̂ = ρ̂S⊗ ρ̂B, there
exist no quantum correlations between these subsystems [42]. This statement retains its validity when going from
Hilbert space to phase-space quantum mechanics. Specifically, after the Weyl transformation, the total density
operator of the universe at times t < 0 becomes the factor product of the two Wigner functions of S and B. The
prove of this statement is a straightforward application of the Weyl transform definition and the fact that both
operators belong to different Hilbert spaces.



3.3 Ullersma-Caldeira-Leggett Model in Phase Space

3.3.1 Hamiltonian for the model

Following Ullersma’s ideas [40], we couple linearly a single DOF, r = (p,q), to a thermal bath
modeled as a collection of F independent harmonic oscillators. Their Hamiltonians read3

HS(r) =
p2

2m
+ V (q), (3.8)

HB(R) =

F∑
j=1

1

2mj
Pj

2 +
1

2
mjω

2
jQ

2
j , (3.9)

HSB(r,R) = −q
F∑
j=1

cjQj + q2
F∑
j=1

c2
j

2mjω2
j

. (3.10)

A special mention has to be made about the second term of the interaction HamiltonianHSB(r,R).
The physical reason for the inclusion of this term lies in a potential renormalization introduced
by the the bilinear coupling in the same Hamiltonian. Then, the inclusion of the second term
guarantees that the minimum of the Hamiltonian of the universe respect to the system coordinate
is completely determined by the bare potential V (q) [37].

The next step towards the construction of the Wigner propagator within this model corre-
sponds to the derivation of the equations of motion for the set of DOF r,R. In this regard, there
are different ways to proceed. One possibility is to calculate, in the Hilbert space of the universe,
the Heisenberg equations of motion for the observables p̂, q̂, P̂j and Q̂j . Then, by means of the
Weyl transform, the equations of motion in phase-space are obtained. This procedure is straight-
forward due to the fact that the operator differential equations are linear and the observables of
S and B commutes. Other straightforward alternative is to transform directly the Hamiltonians
operators into their Weyl symbols and then, to obtain the differential equations by means of the
classical Poisson brackets or its equivalent, the Hamilton equations of motion.4 In the present
work we use the latter approach to the dynamical equations which take the form

Ṗj = −mjω
2
jQj + cjq, Q̇j =

Pj
mj

, (3.11)

for the bath DOF. On the other hand, the canonical equations for the central system take the
form

ṗ = −∂V
∂q

+
F∑
j=1

cjQj − q
F∑
j=1

c2
j

mjω2
j

, q̇ =
p

m
. (3.12)

The solution for the set in Eq. (3.11) has been explicitly calculated in [37] within the configuration
space framework. Despite of this, the solution set is the same because the equations take the
same mathematical form. Once the bath equations has been solved, it is possible to construct a

3We are removing the label W from this point. It should be clear throughout this chapter that we are working
with the Weyl symbols of the Hamiltonian operators.

4See section D.3 in Appendix D and reference [15] to see procedure to obtain the Weyl symbols of some important
observables.



Langevin-like equation from which we can define the dissipation kernel, the history dependence of
the damping and, most importantly, the construction of the spectral density to characterize the
bath phenomenology. Instead of repeat these steps in the present framework, we want to explore
an alternate way to obtain the same results. Thus, we will focus our discussion on the structure
of the Wigner propagator for the Ullersma-Caldeira-Leggett model. From it, we will obtain the
dynamical equations that makes the action functional an extremal and, from then, we will discuss
the transition into the continuos regime for the bath modes.

3.3.2 Wigner propagator for the Ullersma-Caldeira-Leggett model

The discussion of the state evolution in phase-space, within the integral approach, requires the
knowledge of the propagator that evolves states in time. To know the propagator is equivalent to
have solved completely the dynamics. Nonetheless, even in the simplest case, the final goal does
not correspond to the complete calculation of the path integral that represents the propagator.
Instead, we just want to analyze the action functional to find, by means of the variational calculus,
the classical allowed trajectories.

The Wigner propagator for the Ullersma-Caldeira-Leggett model takes the form5

GW(r′′,R′′j , t; r
′,R′j , 0) =

1

2π~

∫
Dr

∫
Dr̃ exp

(
− i

~
SS[{r}, {r̃}, t]

)
×

F∏
j=1

δ
(
P ′′j − P cl

j (P ′j , Q
′
j , t)

)
δ
(
Q′′j −Qcl

j (P ′j , Q
′
j , t)

)
(3.13)

× exp

{
i

~

[
cj

∫ t

0
dsQcl

j (P ′j , Q
′
j , s)q̃(s)−

c2
j

mjω2
j

∫ t

0
dsq(s)q̃(s)

]}
.

In the first line we have the path integral representation of the Wigner propagator of the central
system, with the action taking the form

SS[{r}, {r̃}, t] =

∫ t

0
ds

[
ṙ ∧ r̃ +HS

(
r +

1

2
r̃

)
−HS

(
r− 1

2
r̃

)]
. (3.14)

In the second line, P cl
j (P ′j , Q

′
j , t) and Q

cl
j (P ′j , Q

′
j , t) represent the solution to the classical equa-

tions of motion for the bath DOF in Eq. (3.11). Thus, the Wigner propagator is a δ-function along
the classical trajectory in the phase-space components of the bath. This in turn shows unambigu-
ously the classical nature of the dynamics of thermal baths described by collections of harmonic
modes. These classical dynamics prevent the system-bath interaction to exhibit non-trivial quan-
tum effects in phase-space. An approximation that incorporates quantum aspects of the bath
dynamics will be developed in Chap. 4. Finally, The third line of the propagator provides, on one
hand, the bilinear interaction term among the system and the bath DOF. On the other hand, the
last term represents the renormalization term for the system potential. As can be seen from the
propagator in Eq. (3.13), the decoupled case (cj = 0) directly implies an isolated system dynam-
ics evolving uniquely under the SS, whereas all the bath modes becomes independent harmonic

5A more general propagator will be constructed in chapter 4. Particularly, The special case of the propagator
for the Ullersma-Caldeira-Leggett model used in this chapter will be deduced, as a particular case of Eq. (4.53), in
Appendix A.



oscillators evolving along the classical trajectory defined by their bare frequencies ωj .

3.3.3 Propagating function for the Ullersma-Caldeira-Leggett model

In this section, we shall assume that initial Wigner function of the total system can be written
as ρW,S(r′, 0)ρW,B(R′1,R

′
2, . . .R

′
F , 0). Additionally, as in the last case, we assume that the envi-

ronment is initially at constant temperature T . Since the bath modes are independent of each
other, then, the Wigner function of the bath can be written as

ρW,B(R′1,R
′
2, . . .R

′
F , 0) =

F∏
j=1

ρW,j(P
′
j , Q

′
j , 0), (3.15)

where the j-th bath mode Wigner function takes the form

ρW,j(P
′
j , Q

′
j , 0) =

1

π~
tanh (~βωj/2) exp

[
−tanh (~βωj/2)

mjωj~
(P ′2j +m2

jω
2
jQ
′2
j )

]
. (3.16)

This result allow us to characterize completely the initial state of the bath Additionally, it is a key
ingredient to include in the calculation of the influence functional given in Eq. (3.7). Once one
includes the action functionals and the bath initial state into FW, the calculation can be done due
to the linearity of the bath potentials. Thus, after a lenghty calculation, it is possible to shown
that the initial factorizing conditions lead us to the influence given by [44]

FW[{r}, {r̃}, t] = exp

{
−i

2µ

~

∫ t

0
dsq(s)q̃(s)− i

2

~

∫ t

0
ds

∫ s

0
duαI(s− u)q(u)q̃(s)

− 1

~

∫ t

0
ds

∫ s

0
duαR(s− u)q̃(u)q̃(s)

}
, (3.17)

where

µ =

F∑
j=1

c2
j

2mjω2
j

, αI(s− u) = −
F∑
j=1

c2
j

2mjωj
sinωj(s− u), (3.18)

and

αR(s− u) =
F∑
j=1

c2
j

2mjωj
coth

(
~ωjβ

2

)
cosωj(s− u). (3.19)

Expression (3.17), in appropriate coordinates of difference and half-sum, coincides with the stan-
dard result [47,48]. At this point we cannot talk about dissipation yet because an important step
is left, the evaluation of F → ∞. To achieve that, let us describe the continuum of harmonic
oscillators, as in the previous approach, by the spectral distribution I(ω). In this framework, the
integral kernel

α(s) = αR(s) + iαI(s) =
1

π

∫ ∞
0

dωI(ω)

[
coth

(
~ωβ

2

)
cosωs− i sinωs

]
=

1

~
K(s), (3.20)



plays a predominant role in the description of the bath behavior and the influence it exerts on the
central system. It can be shown that this kernel defines completely the structure of the phase of
the influence functional, and therefore, the dynamics of the system [44, 49]. The imaginary part
αI(t) of the Feynman-Vernon kernel is related to the damping kernel γ(s) of the classical equation
of motion of this model,

αI(s) =
m

2

dγ(s)

ds
, (3.21)

Thus, the propagating function of the Wigner function for non-Markovian dissipative system
within the Caldeira-Leggett approach can be written as

JW(r′′, r′, t) =
1

h

∫
Dr

∫
Dr̃ exp

(
− i

~
SS[{r}, {r̃}, t]

)
exp

{
−i

2µ

~

∫ t

0
dsq(s)q̃(s)− i

m

~

∫ t

0
ds

∫ s

0
du

dγ(s− u)

d(s− u)
q(u)q̃(s)

− 1

~

∫ t

0
ds

∫ s

0
duαR(s− u)q̃(u)q̃(s)

}
, (3.22)

3.4 Stochastic Non-Markovian Dissipative Propagator of theWigner
Function

3.4.1 Stochastic Propagating Function for the Density Matrix

Let us a consider the time evolution of the central system S under the standard Hamiltonian
HS = p2

2m + V (q) and the external influence of the bath by means of an stochastic force ζ(t) with
a first statistical moment 〈ζ(t)〉 = 0, and characterized by the two-time correlation function [37]

〈ζ±(t)ζ±(0)〉 = ~
∫ ∞

0

dω

π
I(ω)

[
coth

(
~ωβ

2

)
cos(ωt)∓ i sin(ωt)

]
. (3.23)

Assuming the dipolar coupling approximation to the fluctuating force, the Feynman-propagator
matrix elements will be given by

〈q′′+|Û(t)|q′+〉 =

∫
Dq+ exp

{
i

~

∫ t

0
ds

[
1

2
mq̇2

+ − V (q+) + q+ζ+(s) +
m

2
γ(0)q2

+

]}
. (3.24)

The first two terms in the square brackets represent the unitary standard Lagrangian function for
the q+ DOF. The third one represents the aforementioned dipolar coupling between the system
DOF and the bath stochastic force. The final term, a renormalization factor, has been introduced
for later convenience.

For the propagator of the density matrix of S and knowing that

J(q′′+, q
′′
−, t; q

′
+, q

′
−) = 〈q′′+|Û(t)|q′+〉〈q′′−|Û †(t)|q′−〉, (3.25)



we have

J(q′′+, q
′′
−, t; q

′
+, q

′
−) = (3.26)∫

Dq+ exp

{
i

~

∫ t

0
ds

[
1

2
mq̇2

+ − V (q+) +
m

2
γ(0)q2

+ + q+ζ+(s)

]}
×
∫
Dq− exp

{
− i

~

∫ t

0
ds

[
1

2
mq̇2
− − V (q−) +

m

2
γ(0)q2

− + q−ζ−(s)

]}
.

Note that in the latter expression we have introduced independent stochastic forces for each Û

according to Eq. (3.23). The presence of two independent noises was already reported in [50, 51]
in the context of the stochastic master equation. Then, from Eq. (3.26) we have

〈J(q′′+, q
′′
−, t; q

′
+, q

′
−)〉 =

∫
Dq+

∫
Dq−

〈
exp

{
i

~

∫ t

0
ds [q+ζ+(s)− q−ζ−(s)]

}〉
(3.27)

× exp

 i

~

t∫
0

ds

[
1

2
mq̇2

+ −
1

2
mq̇2
− − V (q+) + V (q−) +

m

2
γ(0)q2

+ −
m

2
γ(0)q2

−

] .

Since we are assuming Gaussian stochastic processes, the average over the fluctuating forces ζ±(s)

can be carried out analytically6, such that〈
exp

{
i

~

∫ t

0
ds [q+ζ+(s)− q−ζ−(s)]

}〉
= (3.28)

exp

{
− 1

~2

∫ t

0
ds

∫ s

0
du [q+(s)q+(u)〈ζ+(s)ζ+(u)〉 − q+(s)q−(u)〈ζ+(s)ζ−(u)〉]

}
× exp

{
− 1

~2

∫ t

0
ds

∫ s

0
du [q−(s)q−(u)〈ζ−(s)ζ−(u)〉 − q−(s)q+(u)〈ζ−(s)ζ+(u)〉]

}
. (3.29)

Since 〈ζ±(s)ζ∓(0)〉 = 〈ζ∓(s)ζ∓(0)〉, we finally have

〈J(q′′+, q
′′
−, t; q

′
+, q

′
−)〉 = (3.30)∫

Dq+

∫
Dq− exp

 i

~

SS[q+]− SS[q−] +
µ

2

t∫
0

ds(q2
+(s)− q2

−(s))


× exp

−1

~

t∫
0

ds

s∫
0

du[q+(s)− q−(s)] [q+(u)α(s− u)− q−(s)α∗(s− u)]

 ,

where we have used, by means of Eq. (??) and Eq. (3.18), the relationmγ(0) = µ. Additionally, we
have used the relation, given by Eq (3.20), among the noise correlation function and the Feynman-
Vernon kernel. Finally, it is worth mentioning that as it stands, Eq. (3.30) reproduces the usual
form of the propagating function of the Caldeira-Leggett model, cf. p.110 in [49]. Additionally,
semiclassical approaches are accessible from Eq. (3.26).

6Take the average over ζ+ and ζ− in Eq. (3.27) as a given function G[ζ+, ζ−]. Expand G[ζ+, ζ+] in terms of ζ+
and ζ− and use the fact that the random forces are Gaussian (cf. Ref. [52])



3.4.2 Stochastic Propagating Function for the Wigner Function

For this case we have

GW(r′′, t; r′, 0; ζ±) (3.31)

=
1

2π~

∫
Dr

∫
Dr̃ exp

{
− i

~

∫ t

0
ds

[
ṙ ∧ r̃ +HS

(
r +

1

2
r̃

)
−HS

(
r− 1

2
r̃

)]}
× exp

{
i

~

∫ t

0
ds [mγ(0)qq̃ + q̃(ζ+ − ζ−)]

}
with ζ± as in Eq. (3.23). By defining GW(r′′, t; r′, 0) = 〈GW(r′′, t; r′, 0; ζ±)〉, we can write

GW(r′′, t; r′, 0) = (3.32)∫
Dr

∫
Dr̃ exp

{
− i

~

∫ t

0
ds

[
ṙ ∧ r̃ +HS

(
r +

1

2
r̃

)
−HS

(
r− 1

2
r̃

)
−mγ(0)q(s)q̃(s)

]}
×
〈

exp

{
i

~

∫ t

0
ds

[
q(s)(ζ+ − ζ−) +

1

2
q̃(s)(ζ+ + ζ−)

]}〉
.

Proceeding as we did in the last section, we obtain〈
exp

{
i

~

∫ t

0
ds

[
q(s)(ζ+ − ζ−) +

1

2
q̃(s)(ζ+ + ζ−)

]}〉
= (3.33)

exp

[
−2

i

~

∫ t

0
ds

∫ s

0
duq̃(s)q(u)αI(s− u)− 1

~

∫ t

0
ds

∫ s

0
duq̃(s)q̃(u)αR(s− u)

]
,

Finally, by putting this result into Eq. (3.32) we obtain

GW(r′′, t; r′, 0) (3.34)

=

∫
Dr

∫
Dr̃ exp

{
− i

~

∫ t

0
ds

[
ṙ ∧ r̃ +HS

(
r +

1

2
r̃

)
−HS

(
r− 1

2
r̃

)
− 2µq(s)q̃(s)

]}
× exp

[
−2

i

~

∫ t

0
ds

∫ s

0
duq̃(s)q(u)αI(s− u)− 1

~

∫ t

0
ds

∫ s

0
duq̃(s)q̃(u)αR(s− u)

]
.

3.4.3 Semiclassical General Approximation in the Ullersma-Caldeira-Leggett
model

In this section we will derive the general expression for the semiclassical propagating function of
the Wigner function. In this general scenario and for real time, the action S[{r}, {r̃}, t] containing
the dynamical information reads7 [44, 49]

S[{r}, {r̃}, t] = SS[{r}, {r̃}, t] +mq(0)

∫ t

0
dsq̃(s)γ(s) (3.35)

+m

∫ t

0
ds

∫ s

0
duγ(s− u)q̇(u)q̃(s)− i

2

∫ t

0
ds

∫ t

0
du αR(s− u)q̃(u)q̃(s),

7We are using, in the last term of the action, the property
∫ t

0
ds

∫ t

0
du(·) = 2

∫ t

0
ds

∫ s

0
du(·)



where SS[{r}, {r̃}, t] has the form

SS[{r}, {r̃}, t] =

∫ t

0
ds

[
ṙ ∧ r̃ +HS

(
r +

1

2
r̃

)
−HS

(
r− 1

2
r̃

)]
. (3.36)

The additional non-unitary terms in Ec. (3.35) comes from the analytical calculation of the
influence functional in configuration space. From those terms can be seen that the symplectic
symmetry is broken. This can be explained by the choice we have made for the coupling term:
the central system is coupled to the bath just in the position, i.e., a qQ type of coupling. To
recover the symmetry, one should introduce a similar coupling in the momenta, i.e., a general
coupling term of the form

∑F
j=1 r ∧ CjRj , with

Cj =

(
0 Cj,qQ

Cj,pP 0

)
. (3.37)

However, in this case the behavior is qualitative very similar to the one in absence of p-coupling
[53,54]. If we would introduce independent baths for q and p-couplings, we have to deal with some
extra phenomena, e.g., a kind of semiclassical frustration of dissipation which is characterized
by underdamped oscillations and longer relaxation times in the strong coupling regime which
is generated because of the canonically conjugate character of position and momentum [53, 54].
We have omitted the mixed coupling terms Cj,qP , and Cj,pQ because, by means of canonicals
transformations, they can be seen as couplings in positions and momenta, respectively, plus a
harmonic shift of the potential [39]. So, the breaking of the symplectic geometry is well justified
and we can guarantee that the basic features of quantum dissipation are encoded in Ec. (3.35)
and, off course, the propagating function obtained from it.

We find convenient to express S[{r}, {r̃}, t] as

S[{r}, {r̃}, t] =

∫ t

0
dsφ({r}, {r̃}, s), (3.38)

with

φ({r}, {r̃}, s) =ṙ ∧ r̃ +HS

(
r +

1

2
r̃

)
−HS

(
r− 1

2
r̃

)
+mq(0)q̃(s)γ(s) (3.39)

+mq̃(s)

∫ s

0
duγ(s− u)q̇(u)− i

2
q̃(s)

∫ t

0
du αR(s− u)q̃(u).

Thus, the stationary paths which make the action S an extremum are those that satisfy the
variational conditions

δS
δr

= 0,
δS
δr̃

= 0, (3.40)

which, in turn, implies the that φ must satisfy the equations

d

dt

(
∂φ

∂ṙ

)
− ∂φ

∂r
= 0,

∂Φ

∂r̃
= 0, (3.41)



or equivalently,

d

dt

(
∂φ

∂ṗ

)
− ∂φ

∂p
= 0,

∂φ

∂p̃
= 0, (3.42)

d

dt

(
∂φ

∂q̇

)
− ∂φ

∂q
= 0,

∂φ

∂q̃
= 0.

Then, after the explicit calculation, but keeping in mind that the system potential V has not been
yet specified, we obtain the following set of four equations

ṗ = − ∂

∂q̃

[
HS

(
r +

1

2
r̃

)
−HS

(
r− 1

2
r̃

)]
−m d

ds

∫ s

0
duγ(s− u)q(u)

+ i

∫ t

0
du αR(s− u)q̃(u), (3.43)

q̇ =
∂

∂p̃

[
HS

(
r +

1

2
r̃

)
−HS

(
r− 1

2
r̃

)]
,

˙̃p = − ∂

∂q

[
HS

(
r +

1

2
r̃

)
−HS

(
r− 1

2
r̃

)]
+m

d

ds

∫ t

s
duγ(u− s)q̃(u) = 0

˙̃q =
∂

∂p

[
HS

(
r +

1

2
r̃

)
−HS

(
r− 1

2
r̃

)]
.

It seem worth mentioning that an equivalent set of equations were previously derived by Grabert,
Schramm and Ingold working in configuration space [55]. The classical limit in this case reduces to
the Langevin equation without noise term and with an extra term, −mq′γ(s), showing that even
classical processes depend on the initial state (see [55] and reference therein). It is also important
to emphasize the fact that this set of equations has as limit case the set found in Eq. (2.24)
when we were discussing the semiclassical regime from the unitary dynamics. Clearly, as long as
we decouple the central system from the bath, i.e., once we have set the condition cj = 0, the
dissipation stops and the extremal equations in Eq. (3.43) becomes those of Eq. (2.24). Following
the same procedure of that section, by a change of variables from (r, r̃) to (r+, r−) we can write
the above set of equations as

ṗ± = − ∂

∂q±
HS (r+)− m

2

d

ds

∫ s

0
duγ(s− u) (q+(u) + q−(u)) (3.44)

± m

2

d

ds

∫ t

s
duγ(u− s) (q+(u)− q−(u)) + i

∫ t

0
du αR(s− u) (q+(u)− q−(u)) ,

q̇± =
∂

∂p±
HS (r±) .

Considering that γ(u− s) = γ(s− u), we can see that in this case the symmetry between the tips
is broken. Although the dissipative kernel γ(s) appears in a cumbersome way, we here see some
additional effects like a kind of enhancement (or suppression) of dissipation for r− and a contrary
effect for r+ by the real integral term involving (q+(u)− q−(u)).

Having found the extremal equations directly from the more general phase functional within
the Ullersma-Caldeira-Leggett model, we would like to write the mathematical expression for the
propagating function. In this regard, we make use of the general expression defining this quantity
in Eq. (3.6). Once the influence functional is known, we can put it into this equation and, from



it, to implement the semiclassical approximation. Thus, if we take use the results in Eq. (2.18),
Eq. (3.5) and Eq. (3.35), we can arrive at the following form of the propagating function at
the semiclassical level in the van Vleck approximation within the phase-space description of the
dynamics

JW(r′′, t; r′, 0) =
4

h

∑
j+,j−

1√
|det(Mj+,j−)|

exp

{
− i

~
SS [{r+}, {r−}, t]

+
i

2
πνj+,j− −

i

~
m

2
(q+(0) + q−(0))

∫ t

0
ds (q+(s)− q−(s)) γ(s)

− i

~
m

2

∫ t

0
ds

∫ s

0
du γ(s− u) (q̇+(u) + q̇−(u)) (q+(s)− q−(s))

− 1

2~

∫ t

0
ds

∫ t

0
du αR(s− u) (q+(u)− q−(u)) (q+(s)− q−(s))

}
.

(3.45)

Here, νj+,j− represent the Maslov index for the pair of trajectories j+, j−. Similarly, Mαβ
j+,j−

=

∂2Sj/∂rα∂rβ represent the pair of stability matrices associated to the aforementioned trajectories.
Regarding the additional terms in the above equation, we clearly interpret the ones related to the
damping kernel γ(s) as related to the dissipation process. On the other hand, the unique real
term above represents the decoherence kernel. Thus, as is expected from the standard theory of
decoherence, we see that this term depends only on the distance of the tips chords, q+, q−.

3.5 Numerical Results

In order to provide an insight of the performance of the semiclassical propagating function
of the Wigner function in the presence of non-Markovian effects, we coupled a Morse oscillator
to a collection of harmonic oscillators and calculate the propagating function at different times
for a particular initial condition. Thus, the figures show our results using an Ohmic spectral
density and a cutoff ωD = 4ωmin. Since the damping rate, γ, and thermal energy, kBT , are lower
than the typical time and energy scale of the system, respectively, we observe that the pattern
of the propagator is similar in both cases. However, in the dissipative case we can observe how
the probability is concentrated in a smaller region than in the unitary case. In particular, it is
clear how contributions from large chords are suppressed in the damped case by the effect of
decoherence.



3.5.1 Semiclassical unitary evolution

Figure 3.1: Semiclassical unitary evolution at times t = 0.5072s, t = 1.0144s, t = 6.0864s, and
t = 12.1728s; with initial phase-space point (p′, q′) = (0,−1). Parameter values are m = 0.5,
ωmin = 0.0125, D = 1, a = 1.25, kBT = 0.04ωmin, γ = 0.04ωmin and ωD = 4ωmin. Finally, ωmin
denotes the frequency in the harmonic approximation, ωmin =

√
2a2D/m.



3.5.2 Semiclassical disipative evolution

Figure 3.2: Semiclassical dissipative evolution at times t = 0.5072s, t = 1.0144s, t = 6.0864s,
and t = 12.1728s; with initial phase-space point (p′, q′) = (0,−1). Parameter values are m = 0.5,
ωmin = 0.0125, D = 1, a = 1.25, kBT = 0.04ωmin, γ = 0.04ωmin and ωD = 4ωmin. Finally, ωmin
denotes the frequency in the harmonic approximation, ωmin =

√
2a2D/m.



Chapter 4

Semiclassical open dynamics from path integrals

4.1 Introduction

On this chapter we will study a more realistic physical situation. We will consider the coupling
among a quantum DOF and a set of F harmonic bath modes. The interaction potential will
be considered non-linear, which in turn implies a more rich structure for the propagator. The
mathematical framework will be, as in the unitary non-linear case, the path integral formulation
in phase-space.

4.2 Semiclassical Wigner propagator for an open system

To begin with, let us consider the Hamiltonian of the universe as

Ĥ =ĤS(r) + ĤB(R) + ĤSB(r,R) (4.1)

=
p̂2

2m
+ VS(q̂) +

F∑
j=1

[
P̂ 2
j

2mj
+ VB(Q̂j)

]
+

F∑
j=1

VSB(q̂, Q̂j)

=
p̂2

2m
+

F∑
j=1

P̂ 2
j

2mj
+W

(
q̂, {Q̂j}

)
,

where W represents the total contribution to the potential energy for the composite system. The
Weyl symbol of the Hamiltonian is given by

H =
p2

2m
+

F∑
j=1

P 2
j

2mj
+W (q, {Qj}) , (4.2)

whereas the path integral representation of the Wigner propagator takes the form

GW(R′′, t;R′, 0) =
1

(2π~)F+1

∫
DR

∫
DR̃ exp

(
− i

~
S[{R}, {R̃}, t]

)
. (4.3)

In order to calculate the propagator for the Hamiltonian in Eq. (4.2), we will consider the discrete
version of this propagator

GW(Rn, n∆t;Rn−1, (n− 1)∆t) =
1

(2π~)2(F+1)

∫
d2(F+1)R̃n exp

(
− i

~
φn

)
. (4.4)
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Here φn represents the discrete version of the action in phase space. Its mathematical form is
given by

φn = ∆Rn ∧ R̃n +

[
H

(
R̄n +

R̃n
2

)
−H

(
R̄n −

R̃n
2

)]
∆t, (4.5)

with R0 = R′, RN = R′′, ∆Rn = Rn −Rn−1 and R̄n = Rn+Rn−1

2 . Regarding the first term of
the phase, it corresponds to a purely geometrical term that involves a bilinear symplectic form
that can be explicitly written as [9]

∆Rn ∧ R̃n = ∆rn ∧ r̃n +

F∑
j=1

∆Rjn ∧ R̃jn, (4.6)

where r̃n and R̃n represent the quantum fluctuations over the trajectories rn,Rn respectively. In
relation to the terms in brackets in Eq. (4.5), they can be explicitly written as

∆Hn =
p̄np̃n
m

+
F∑
j=1

P̄jnP̃jn
mj

+ VS

(
q̄n +

q̃n
2

)
− VS

(
q̄n −

q̃n
2

)
(4.7)

+ U

(
q̄n +

q̃n
2
,

{
Q̄jn +

Q̃jn
2

})
− U

(
q̄n −

q̃n
2
,

{
Q̄jn −

Q̃jn
2

})
.

Since the phase of the propagator includes all the relevant information about the physical state
of the universe, we are mainly concerned with the mathematical form it will take once we have
assigned a functional form for the potential. In this respect, we consider that, without limiting the
generality of the discussion, the interaction potential can be put into a central potential form [37]

U (q,Qj)→ U

(
Qj −

cj
mjω2

j

q

)
, (4.8)

with cj playing the role of a coupling constant between the central system and the j-th bath
mode. This choice is by no means arbitrary and allows, in turn, to characterize the potential as
an invariant under coordinate translations. In terms of the dimensionless quantity cj/mjω

2
j , and

for the sake of simplicity in the notation, we define the quantity

qjn =
cj

mjω2
j

qn, (4.9)

which carries information about the intensity of the coupling of the central system with every indi-
vidual bath mode. The natural question that arises at this point is: what will be the mathematical
form of the U potential?, even more, how are we going to include a semiclassical description of the
dynamics at this level in the formalism? In relation to the first question, we have decided not to
specify the mathematical form of the potential but writing it in a Taylor series expansion up to the
third term which, in turn, becomes the first non-linear correction to linear potential.On the other
hand, for the last question the natural answer comes from the fact that within the semiclassical
approximation it is decisive to expand around the path leading to the dominant contribution,
i.e. the classical path [37]. Therefore, the decomposition of a general path into the classical path



and fluctuations around it turns to be more a necessity than a convenience. Since the action is
stationary at classical paths, we are obliged to express a general path for the central system as
rn = rcl

n + r̃n. Here, r̂n, R̂jn are the coordinates that represents the classical trajectories in n-th
time interval. Then, from Eq. (4.7)

∆Un =
F∑
j=1

[
Un

(
Q̄jn + ˆ̄Qjn +

Q̃jn
2

)
− Un

(
Q̄jn + ˆ̄Qjn −

Q̃jn
2

)]
, (4.10)

where we have defined the quantity Qjn = Qjn − qjn. In terms of this quantity we can Taylor
expand both Un as

Un

(
Q̄jn + ˆ̄Qjn ±

Q̃jn
2

)
≈ U (0)( ˆ̄Qjn) + U (1)( ˆ̄Qjn)

[
Q̄jn ±

Q̃jn
2

]
(4.11)

+
1

2!
U (2)( ˆ̄Qjn)

[
Q̄jn ±

Q̃jn
2

]2

+
1

3!
U (3)( ˆ̄Qjn)

[
Q̄jn ±

Q̃jn
2

]3

,

giving place to

∆Un =

F∑
j=1

[
U (1)( ˆ̄Qjn)Q̃jn + U (2)( ˆ̄Qjn)Q̄jnQ̃jn +

1

3!
U (3)( ˆ̄Qjn)

(
3Q̄2

jnQ̃jn +
Q̃3
jn

4

)]
. (4.12)

Following the same steps, this time for the system potential, allow us to write

∆Vn = V (1)(ˆ̄qn)q̃n + V (2)(ˆ̄qn)q̄nq̃n +
1

3!
V (3)(ˆ̄qn)

(
3q̄2
nq̃n +

q̃3
n

4

)
. (4.13)

With the purpose of simplifying the writing in the system-bath sector of the potential, we find
convenient to define the quantities

Ajn =
∂2U

∂Q̄2
jn

(
Q̄jn − q̄jn

)
+

1

2

∂3U

∂Q̄3
jn

(
Q̄jn − q̄jn

)2
, Bjn =

∂3U

∂Q̄3
jn

, (4.14)

such that the argument of the sum in Eq. (4.12) can be written as

∆Ujn =
∂U

∂Q̄jn
Q̃jn + ∆U ′jn =

∂U

∂Q̄jn
Q̃jn +AjnQ̃jn +

Bjn
24
Q̃3
jn. (4.15)

By putting all of this into the action, we obtain

φn = (∆pn + ∆p̂n) q̃n − (∆qn + ∆q̂n) p̃n +

(
p̄n + ˆ̄pn

)
p̃n

m
∆t+ ∆Vn∆t (4.16)

+

F∑
j=1

(∆Pjn + ∆P̂jn)Q̃jn −
F∑
j=1

(∆Qjn + ∆Q̂jn)P̃jn

+
F∑
j=1

(P̄jn + ˆ̄Pjn)P̃jn
mj

∆t+
F∑
j=1

∆Ujn∆t.

At this point, and anticipating the limit process we will face in the composition of the propagator,



we can extract from the above phase the classical equations of motion. Thus, in the ∆t→ 0 limit
we will have

∆q̂n −
∆t

m
ˆ̄pn → 0 (4.17)

∆Q̂jn −
∆t

mj

ˆ̄Pjn → 0

∆p̂n +
∂V (ˆ̄qn)

∂q̄n
∆t−∆t

F∑
j=1

cj
mjω2

j

∂U( ˆ̄Qjn)

∂Q̄jn
→ 0

∆P̂jn +
∂U( ˆ̄Qjn)

∂Q̄jn
∆t→ 0.

Then, we take advantage of this simplification in the action phase, despite the fact we have not
taken formally the limit over the propagator which, by now, is under construction. In this way,
regardless the absence of the limit, we will write the simplified form of the phase as

φn =φS
n +

F∑
j=1

∆Pjn(q̃jn + Q̃jn)−
F∑
j=1

∆QjnP̃jn +

F∑
j=1

P̄jnP̃jn
mj

∆t+

F∑
j=1

∆U ′jn∆t. (4.18)

If we consider the SB sector of the above phase and take into account the integrals over the bath
fluctuations in Eq. (4.4), we see that we are in position to integrate over Q̃jn, P̃jn. Thus, by means
of the definition

Q̃′jn =

(
Bjn∆t

8~

) 1
3

Q̃jn = α
1
3
jnQ̃jn, (4.19)

we obtain the following structure for the propagator

Gn,n−1 =

∫
dp̃n
2π~

dq̃n
2π~

exp

(
− i

~
φS
n

) F∏
j=1

α
− 1

3
jn

~
δ

(
∆Qjn −

P̄jn
mj

∆t

)
(4.20)

×Ai

α− 1
3

jn

~

[
U (2)(Qcl

jn)
(
Q̄jn − q̄jn

)
∆t+ ∆Pjn

] exp

(
− i

~
∆Pjnq̃jn

)
.

where
φS
n = ∆pnq̃n −

(
∆qn −

p̄n
m

∆t
)
p̃n + ∆V ′n∆t. (4.21)

The factor α−
1
3

jn , which depends upon the third derivative of the SB potential, determines how
extended is the Airy function. Its oscillatory character will be determined by direct comparison
between the discrete version of the action φn and ~. In a quantum regime, those quantities are of
roughly of the same order of magnitude. Thus the oscillatory pattern is less pronounced that in the
semiclassical regime, where φn � ~, giving place to a highly oscillatory phase in the propagator.
This, in turn, implies that the regions in phase-space where there oscillations are strong enough,
the amplitude will rapidly decay to zero, whereas the non-trivial contribution will come from
regions near to the stationary solutions, i.e., the classical trajectories.



To simplify the propagator in Eq. (4.20), we introduce, on one hand, the change of variables

P̆jn =
[
mjU

(2)(Qcl
jn)
]− 1

4
Pjn, Q̆jn =

[
mjU

(2)(Qcl
jn)
] 1

4
Qjn, q̆jn =

[
mjU

(2)(Qcl
jn)
] 1

4
qjn,

(4.22)

and, on the other hand, the definition

τ̆
− 1

3
jn =

α
− 1

3
jn

~

[
mjU

(2)(Qcl
jn)
] 1

4
. (4.23)

By doing so, we obtain the propagator

Gn,n−1 =

∫
dp̃n
2π~

dq̃n
2π~

exp

(
− i

~
φS
n

) F∏
j=1

τ̆
− 1

3
jn δ

(
∆Q̆jn − θjn ˘̄Pjn

)
(4.24)

Ai
(
τ̆
− 1

3
jn

[
∆P̆jn + θjn

(
˘̄Qjn − ˘̄qjn

)])
exp

(
− i

~
∆P̆jn˘̃qjn

)
.

where we have made use of the definition θjn =

√
U(2)(Qcl

jn)

mj
∆t. This Wigner propagator will be

trivially null unless
Q̆jn = Q̆jn−1 + θjn

˘̄Pjn. (4.25)

This equation establishes a concatenation among the Q̆jn coordinates which, after taking the limit
∆t→ 0, will imply a relation between the final and initial coordinates. However, and regardless its
importance, the above equation cannot support the connection among the momenta at different
times. This, off course, happens since we have considered couplings among coordinates exclusively
in our formulation of the problem. Nevertheless, this apparent asymmetry in the treatment of the
phase-space DOFs can be easily overcome by a canonical transformation. Effectively, an important
feature of the above relation emerges once it is noticed that the distinction between Q̆jn and P̆jn
is basically one of nomenclature. Under canonical transformation theory, the change Q̆jn → P̆jn,
P̆jn → −Q̆jn accounts for the same dynamics, leaving the Hamiltonian as a canonical invariant.
In this sense, we are in position to raise the question about the consequences of expand the above
relation into a system of equations taking the form

Q̆jn =Q̆jn−1 + θjn
˘̄Pjn (4.26)

P̆jn =P̆jn−1 − θjn ˘̄Qjn.

Its solution will shade light on the connection between the initial and final state of the bath
dynamics and will give help us to calculate the composition of the set of N discrete propagators
before considering the continuum limit. Having pondered this special issue, we can take a look
into the solution of this equation system as the matrix equation R̆jn = MjnR̆jn−1. Explicitly,(

P̆jn

Q̆jn

)
=

1

4 + θ2
jn

(
4− θ2

jn −4θjn

4θjn 4− θ2
jn

)(
P̆jn−1

Q̆jn−1

)
. (4.27)



Starting from this equation, we can establish the already metioned relation among the P̆jN , Q̆jN
and the P̆j0, Q̆j0 bath DOFs. To accomplish that, firstly we note that we will obtain a matrix
product of N matrices having all the same mathematical structure. Then we want to calculate
the matrix product MjNMjN−1 · · ·MjnMjn−1 · · ·Mj2Mj1. This can be done by diagonalizing every
matrix in this product such that

MjNMjN−1 · · ·Mj2Mj1 = EjM
diag
jN Mdiag

jN−1 · · ·M
diag
j2 Mdiag

j1 E−1
j , (4.28)

where we have used the same eigenvector matrix Ej due to the fact that all the Mjn matrices
have the same structure and only changes the time interval where they are studied. Nonetheless,
as long as the time is a smooth parameter in non-relativistic quantum mechanics, i.e., time is
homogeneous, the time evolution given by the matices Mjn is essentially the same, and therefore,
we can safely consider that the eigensystem solution for Mjn applies equally for every value of n;
allowing us to conclude that the eigenvector matrix Ej diagonalize them all. Then, after some
manipulations of Eq. (4.28) and by taking the limit ∆t→ 0, we obtain the matrix

Mj(t) =

(
cos θj(t) − sin θj(t)

sin θj(t) cos θj(t)

)
, (4.29)

which represents precisely the stability matrix for the classical trajectory over the complete time-
interval of propagation of the dynamics.

To get a physical insight into the meaning of the angle in the above result, we make use of the
short-time approximation, which is valid as long as we are interested in the limit ∆t → 0 where
∆t2 � 1. Then, by using the notation θjn = Θjn∆t, we can write, after some manipulations, the
Eq. (4.28) as

Ej

(
N∏
n=1

Mdiag
jn

)
E−1
j =

(
1 −

∑N
n=1 Θjn∆t∑N

n=1 Θjn∆t 1

)
, (4.30)

which in the limit ∆t→ 0, i.e., N →∞, becomes

Mj(t) =

(
1 θj(t)

θj(t) 1

)
. (4.31)

We see clearly from this result how the mathematical form of θj emerges as

θj(t) =

∫ t

0
ds

√
U (2)(Qcl

j (s))

mj
. (4.32)

Even more, this procedure shows that the matrix found in Eq. (4.31) is the right approximation
of its complete version in Eq. (4.29) when the argument is small enough to replace the entries
with the first term of its series expansion.

Although we have successfully found the limit for the stability matrix of the trajectories for
the bath modes, we have not yet accomplished the main purpose of the entire calculation, namely,
the composition of the Wigner propagators along the whole time interval. With the aim of
doing this, we must go back to Eq. (4.24) and work out the composition. However, as it stands,



the composition of this propagator by direct use of the Airy functions becomes a cumbersome
task. Hence, if we want to execute a simpler composition, we must get rid of the Airy function
momentarily. How can this be possibly done? By means of one of the most valuable tool the
scientist has at disposal: the Fourier transform.

Fourier Transform of Gn,n−1

Let us consider the formal definition of the symplectic Fourier transform of a phase space
function g(r) as [12]

g̃(γ) ≡ 1

2π

∫
drg(r) exp (iγ ∧ r) , (4.33)

where γ = (α, β) is the variable "dual" to r. The usual Fourier transform of the function g(r) is
given by

(Fg) (σ, τ) =

∫
dpdq g(p, q) exp (i[qσ + pτ ]) . (4.34)

This couple of Fourier transforms are simply related in the following way: g̃(α, β) = (Fg) (−α, β).
This relation enable us to use the traditional Fourier methods to recover the g(r) function from
g̃(γ) as

g(r) =
1

2π

∫
dγ g̃(γ) exp (−iγ ∧ r) . (4.35)

Let γjn = (αjn, βjn) and γjn−1 = (αjn−1, βjn−1) be the asociated dynamical variables in the
Fourier space1. Then, to transform the propagator in Eq. (4.24), we must calculate 5F integrals
to transform the bath variables within the time interval [n− 1, n]∆t. To do this, we will split the
propagator in Eq. (4.24) into two parts: The central system piece of the propagator that does not
depend on the index j, and the bath-system part (SB) that explicitly depend on this index; being
this later part the one we need to work with at the moment.

If we write Eq. (4.24) as Gn,n−1 = GS
n,n−1G

SB
n,n−1, we are facing the task of calculating the

symplectic Fourier transform of the GSB
n,n−1 sector of the whole propagator. Hence,

G̃SB
n,n−1 =

F∏
j=1

1

(2π)2

∫
dR̆jndR̆jn−1 exp

(
i
[
γjn ∧ R̆jn − γjn−1 ∧ R̆jn−1

])
τ̆
− 1

3
jn (4.36)

× δ
(
Q̆jn − (MjnR̆jn−1)Q̆

)
Ai
(
τ̆
− 1

3
jn

[
P̆jn − (MjnR̆jn−1)P̆

]
− τ̆−

1
3

jn θjn˘̄qjn

)
× exp

(
− i

~
∆P̆jn˘̃qjn

)
=

F∏
j=1

G̃SB
j;n,n−1

As can be seen from this expression, we just need to complete the calculation for the j-th term
of the above expression thanks to the non-interacting nature of the bath modes. Let Γjn be the

1The dimensions of the γjn variables are (action)−1/2



phase in G̃SB
j;n,n−1 Then,

Γjn = αjnQ̆jn − βjnP̆jn − αjn−1Q̆jn−1 + βjn−1P̆jn−1 +
1

3

(
Q̃′jn

)3
(4.37)

+ τ̆
− 1

3
jn

[
∆P̆jn + θjn( ˘̄Qjn − ˘̄qjn)

]
Q̃′jn −

˘̃qjn
~

∆P̆jn.

After some manipulations, we find the following structure for G̃SB
j;n,n−1

G̃SB
j;n,n−1 =

4

4 + θ2
jn

exp

64i

3
τ̆jn

[
βjn − 1

2αjnθjn + ˘̃qn/~
(4 + θ2

jn)

]3
 (4.38)

× exp

(
− 4iθjn

4 + θ2
jn

[
βjn −

1

2
αjnθjn +

˘̃qjn
~

]
˘̄qjn

)
× δ (γjn −Mjnγjn−1 − Vjn) .

In fact, the delta in this propagator amounts to the product of two Dirac deltas in a more extended
notation. The matrix Mjn is exactly the one the have found in Eq. (4.27), whereas the term Vjn

represents a two column vector having the mathematical form

Vjn = − 4θjn
4 + θ2

jn

˘̃qjn
~

(
1
θjn
2

)
. (4.39)

Although we can proceed from this point to the composition of the propagator, it is not yet
convenient since the implementation of the composition will become a difficult task at the moment.
To avoid the more than secure complexities arising out of the composition, we take the advantage,
again, of the ultra-short time range for the propagation of the dynamics in each interval. This
idea simplifies considerably the propagator shaping its form into the following expression for the
whole set of bath modes

G̃SB
n,n−1 =

F∏
j=1

exp

 i

3
τ̆jn

[
βjn +

˘̃qjn
~

]3

− iθjn

[
βjn +

˘̃qjn
~

]
˘̄qjn

δ (γjn −Mjnγjn−1 − Vjn) .

(4.40)

Now that we have paved the way, we can proceed with the composition. This will be done
simultaneously for the two sectors of the propagator. To proceed in this direction, we need to
specify the way two and more propagators should be composed. Luckily, the propagator satisfies
the Chapman-Kolmogorov relation, such that

G̃SB
n+1,n−1 =

 F∏
j=1

∫
dγjn

 G̃SB
n+1,nG̃

SB
n,n−1, GS

n+1,n−1 =

∫
drnG

S
n+1,nG

S
n,n−1. (4.41)



Then, for the whole set of finite time-intervals, the above pair of equations becomes

G̃SB
N,0 =

N−1∏
n=1

F∏
j=1

∫
dγjn

 N∏
n=1

G̃SB
n,n−1, GS

N,0 =

(
N−1∏
n=1

∫
drn

)
N∏
n=1

GS
n,n−1. (4.42)

Let us consider initially the first expression. We can write this propagator as

G̃SB
N,0 =

F∏
j=1

(
N−1∏
n=1

∫
dγjnG̃

SB
j;n,n−1

)
G̃SB
N,N−1, (4.43)

By means of the Dirac deltas in G̃SB
j;n,n−1 we can integrate out the γjn variables to obtain

G̃SB
N,0 =

F∏
j=1

exp

N∑
n=1

 i

3
τ̆jn

[
[Mjnγjn−1 + Vjn]β +

˘̃qjn
~

]3
 (4.44)

× exp
N∑
n=1

(
−iθjn

[
[Mjnγjn−1 + Vjn]β +

˘̃qjn
~

]
˘̄qjn

)
× δ (γjN −MjNγjN−1 − VjN ) .

Additionally, from this set of integrations, we have collected the following inductive set of matrix
equations

γj1 = Mj1γj0 + Vj1 (4.45)

γj2 = Mj2γj1 + Vj2 = Mj2Mj1γj0 + Mj2Vj1 + Vj2

...
...

...

γjN = MjNMjN−1 · · ·Mj1γj0 + MjNMjN−1 · · ·Mj2Vj1 + · · ·+ MjNVjN−1 + VjN .

The process of taking the limit to the continuum requires that we specify how this matrix
set behaves in that limit case. A careful manipulation of this matrix expression brings us to the
expression(

α′′j
β′′j

)
=

(
cos θj(t) − sin θj(t)

sin θj(t) cos θj(t)

)(
α′j
β′j

)
− 1

~

(∫ t
0 dsΘj(s) cos [θj(t)− θj(s)] ˘̃qj(s)∫ t
0 dsΘj(s) sin [θj(t)− θj(s)] ˘̃qj(s)

)
. (4.46)

Where αj(t) = α′′j , αj(0) = α′j , βj(t) = β′′j and βj(0) = β′j . Thus, in a more compact notation,
the above expression becomes γ′′j = Mjγ

′
j + Vj .

Continuing with the implementation of the composition and limiting process over G̃SB
N,0, we

now take care of the phase in Eq. (4.44). From Eq. (4.23) we have

τ̆jn =
U (3)(Qcl

jn)∆t

8~2

[
mjU

(2)(Qcl
jn)
]− 3

4
. (4.47)

Then, we define

σjn =
τ̆jn
∆t

=
U (3)(Qcl

jn)

8~2

[
mjU

(2)(Qcl
jn)
]− 3

4
, (4.48)



which, by definition, is independent of ∆t. However, σjn carries time dependence through the
derivatives of the potential evaluated at the classical trajectory. Putting all together, we can write
the limit of G̃SB

N,0 as

lim
N→∞

G̃SB
N,0 =

F∏
j=1

exp

∫ t

0
ds

 i

3
σj(s)

[[
Mj(s)γ

′
j + Vj(s)

]
β

+
˘̃qj(s)

~

]3
 (4.49)

× exp

∫ t

0
ds

(
−iΘj(s)

[[
Mj(s)γ

′
j + Vj(s)

]
β

+
˘̃qj(s)

~

]
q̆j(s)

)
× δ

(
γ′′j −Mj(t)γ

′
j − Vj(t)

)
.

Considering now the central system part of the propagator, we have

GS
N,0 =

(
N−1∏
n=1

∫
drn

)
N∏
n=1

GS
n,n−1 (4.50)

=

(
N−1∏
n=1

∫
dpndqn

)(
N∏
n=1

∫
dp̃n
2π~

dq̃n
2π~

)
exp

(
− i

~

N∑
n=1

φS
n

)
.

We already know that

φS
n =

[
∆pn
∆t

q̃n −
(

∆qn
∆t
− p̄n
m

)
p̃n + ∆V ′n

]
∆t, (4.51)

then

lim
N→∞

GS
N,0 =

1

2π~

∫
Dr

∫
Dr̃ exp

{
− i

~

∫ t

0
ds

[
ṙ ∧ r̃ +HS

(
r +

1

2
r̃

)
−HS

(
r− 1

2
r̃

)]}
. (4.52)

Finally, from Eq. (4.24), Eq. (4.49) and Eq. (4.52), we find that the whole propagator takes
the form

G̃ =
1

2π~

∫
Dr

∫
Dr̃ exp

(
− i

~

∫ t

0
ds

[
ṙ ∧ r̃ +HS

(
r +

1

2
r̃

)
−HS

(
r− 1

2
r̃

)])
(4.53)

×
F∏
j=1

exp

∫ t

0
ds

 i

3
σj(s)

[[
Mj(s)γ

′
j + Vj(s)

]
β

+
˘̃qj(s)

~

]3


× exp

∫ t

0
ds

(
−iΘj(s)

[[
Mj(s)γ

′
j + Vj(s)

]
β

+
˘̃qj(s)

~

]
q̆j(s)

)
× δ

(
γ′′j −Mj(t)γ

′
j − Vj(t)

)
.

In the first line of the this propagator we find the structure of the Wigner propagator for the
central system as if there were no interaction with the reservoir. The second and third lines give
the mathematical structure for the dynamics of the bath modes, how they evolve and the influence
they exert on the central system by means of the couplings obtained from the integrand in the
second line. It is, precisely, in this same line where we find the complete description of the non-
linearity of the potential and its effect on the propagator. Specifically, through the dependence of



the quantity σj defined by

σjn(s) =
U (3)(Qcl

jn)

8~2

[
mjU

(2)(Qcl
jn)
]− 3

4
, (4.54)

the fingerprints of terms beyond the harmonic case are observed. In case this term get removed
from the propagator, the linearity of the propagator is recovered and we fall into the limit case
studied in Appendix A for the propagator of the Ullersma-Caldeira-Leggett model.

Finally, the fourth line, by means of the Dirac delta, ensures that the bath modes evolve on
trajectories defined by the stability matrix of each trajectory. Thus, once the potential is fixed,
these trajectories are also fixed in phase-space by means of a symplectic inverse Fourier transform.
As a limiting case, we find the classic trajectories for the bath modes once the non-linear structure
of the potential disappears from the propagator.

4.3 Inverse Fourier transform

Starting from Eq. (4.53), we would like to write down the propagator once the inverse Fourier
transform is applied to it. Let us consider initially the system-bath part of that propagator, which
is, for obvious reasons, the part of it that we want to transform. Then

G̃SB
j = exp

i

∫ t

0
ds

σj(s)
3

[[
Mj(s)γ

′
j + Vj(s)

]
β

+
˘̃qj(s)

~

]3
 (4.55)

× exp

{
i

∫ t

0
ds

(
−Θj(s)

[[
Mj(s)γ

′
j + Vj(s)

]
β

+
˘̃qj(s)

~

]
q̆j(s)

)}
× δ

(
γ′′j −Mj(t)γ

′
j − Vj(t)

)
.

To apply the transformation, we have to manage explicitly the phase in Eq. (4.55). By means of
a convenient set of definitions given in appendix G, we can write the above expression as

G̃SB
j = exp

{
i
[
(α′j)

3a3j(t) + (β′j)
3a6j(t) + (α′j)

2(β′j)a4j(t) + (α′j)(β
′
j)

2a5j(t)
]}

(4.56)

× exp
{
−i
[
α′ja1j(t) + β′ja2j(t) + I1(t)− I2(t)

]}
× exp

{
i
[
(α′j)

2 [a13j(t)− a7j(t)] + (β′j)
2 [a14j(t)− a8j(t)] + α′jβ

′
j [a15j(t)− a9j(t)]

]}
× exp

{
i
[
α′j [a10j(t)− a16j(t) + a19j(t)] + β′j [a11j(t)− a17j(t) + a20j(t)]

]}
× exp {i [−a12j(t) + a18j(t)− a21j(t) + a22j(t)]}

× δ
(
γ′′j −Mj(t)γ

′
j − Vj(t)

)
.

By choosing the special case of cj = 0, all but a3j(t), a4j(t), a5j(t), a6j(t) becomes zero. Then,

G̃SB
j = exp

{
i
[
(α′j)

3a3j(t) + (β′j)
3a6j(t) + (α′j)

2(β′j)a4j(t) + (α′j)(β
′
j)

2a5j(t)
]}
, (4.57)

which reproduces the unitary case in [38].



The propagator in Eq. (4.56) can be written in a more compact way as

G̃SB
j = exp [iΦj(t)] exp

[
iΓ̃j(α

′
j , β
′
j , t)

]
δ
(
γ′′j −Mj(t)γ

′
j − Vj(t)

)
, (4.58)

where
Φj(t) = I2(t)− I1(t)− a12j(t) + a18j(t)− a21j(t) + a22j(t), (4.59)

and

Γ̃j(α
′, β′, t) =(α′j)

3a3j(t) + (β′j)
3a6j(t) + (α′j)

2(β′j)a4j(t) + (α′j)(β
′
j)

2a5j(t) (4.60)

− β′ja2j(t) + (α′j)
2 [a13j(t)− a7j(t)] + (β′j)

2 [a14j(t)− a8j(t)]

− α′ja1j(t) + α′jβ
′
j [a15j(t)− a9j(t)]

+ α′j [a10j(t)− a16j(t) + a19j(t)] + β′j [a11j(t)− a17j(t) + a20j(t)] .

The propagator in Eq. (4.58) represents the point where we would like to calculate the inverse
Fourier transform because its structure is now suitable to proceed with the integrations. In this
way,

GSB
j =

exp [iΦj(t)]

(2π)2

∫
dα′′jdα

′
jdβ

′′
j dβ′j exp

[
−i
(
α′′j Q̆

′′
j − β′′j P̆ ′′j − α′jQ̆′j + β′jP̆

′
j

)]
(4.61)

× exp
[
iΓ̃j(α

′
j , β
′
j , t)

]
δ
(
α′′j −

[
Mj(t)γ

′
j + Vj(t)

]
α

)
× δ

(
β′′j −

[
Mj(t)γ

′
j + Vj(t)

]
β

)
.

By integating out over the γ′′j variables, we obtain

GSB
j =

1

(2π)2
exp [iΦj(t)] (4.62)

×
∫

dα′jdβ
′
j exp

(
−i
[
Q̆′′j
[
Mj(t)γ

′
j + Vj(t)

]
α
− P̆ ′′j

[
Mj(t)γ

′
j + Vj(t)

]
β

])
× exp

[
i
(
α′jQ̆

′
j − β′jP̆ ′j

)]
exp

[
iΓ̃j(α

′
j , β
′
j , t)

]
.

After some manipulations, we can write this propagator as

GSB
j =

1

(2π)2
exp (iΦj(t))

∫
dα′jdβ

′
j exp

(
i
[
M−1
j (t)R̆′′j − R̆′j

)
∧ γ′j

]
(4.63)

× exp
[
iΓ̃j(α

′
j , β
′
j , t)

]
,

with
Φ̃j(t) = I2(t)− I1(t)− a12j(t) + a18j(t)− a21j(t) + a22j(t) + R̆′′j ∧ Vj(t). (4.64)

The phase of the above double integral is

Λj(α
′
j , β
′
j , t) =β′j

([
M−1
j (t)R̆′′j

]
P̆ ′′j

− P̆ ′j
)
− α′j

([
M−1
j (t)R̆′′j

]
Q̆′′j

− Q̆′j
)

+ Γ̃j(α
′
j , β
′
j , t) (4.65)

=β′jPj − α′jQj + Γ̃j(α
′
j , β
′
j , t).



Therefore,

Λj(α
′
j , β
′
j , t) = (α′j)

3a3j(t) + (β′j)
3a6j(t) + (α′j)

2(β′j)a4j(t) + (α′j)(β
′
j)

2a5j(t) (4.66)

+ (α′j)
2 [a13j(t)− a7j(t)] + (β′j)

2 [a14j(t)− a8j(t)]

+ α′jβ
′
j [a15j(t)− a9j(t)] + α′j [−Qj − a1j(t) + a10j(t)− a16j(t) + a19j(t)]

+ β′j [Pj − a2j(t) + a11j(t)− a17j(t) + a20j(t)] .

We can simplify even more the notation by means of the second set of auxiliary equations found
in appendix G. Thus,

Λj(α
′
j , β
′
j , t) = (α′j)

3Aj(t) + (β′j)
3Bj(t) + (α′j)

2(β′j)Cj(t) + (α′j)(β
′
j)

2Dj(t) (4.67)

+ (α′j)
2Ej(t) + (β′j)

2Fj(t) + α′jβ
′
jGj(t) + α′jHj(t) + β′jJj(t).

and the SB part of the propagator becomes

GSB
j =

1

(2π)2
exp

[
iΦ̃j(t)

] ∫
dα′jdβ

′
j exp

[
iΛj(α

′
j , β
′
j , t)

]
. (4.68)

Finally, putting this into Eq. (4.53) leave us with the final expression of Wigner propagator

G =
1

2π~

∫
Dr

∫
Dr̃ exp

(
− i

~

∫ t

0
ds

[
ṙ ∧ r̃ +HS

(
r +

1

2
r̃

)
−HS

(
r− 1

2
r̃

)])
(4.69)

×
F∏
j=1

1

(2π)2
exp

[
iΦ̃j(t)

] ∫
dα′jdβ

′
j exp

[
iΛj(α

′
j , β
′
j , t)

]
.

At this point, there is no clue that serve as a guide to know if there is an specific way to
transform the multivariate polynomial Λj(α

′
j , β
′
j , t) into a suitable expression that can generate,

after integration, the Airy functions in phase-space. This situation is in clear contrast with the
unitary case studied in Sec. 2.4, where by means of suitable linear transformations, it was possible
to recover the Airy structure for the propagator in phase-space. Nonetheless, this issue can be
clearly understood if we consider the non-linear structure of the calculation we have been working
on. As is already known, the only kind of path integrals suitable to be calculated analytically
are those with a quadratic dependence on its variables, i.e., gaussian integrals. Beyond that,
approximative schemes has to be devised in order to calculate the path integral. Among them,
we can find the centroid theory [56] and the functional expansion of the action up to quadratic
order [45]. Nonetheless, despite this situation, all the physics and the calculations based on them
can be developed, as far as we know, from the mixed representation of the open system propagator.





Conclusions

In the present work we have developed an study of the Wigner propagator in phase-space for
an open quantum system under the semiclassical framework. This study was divided in two main
stages: on one hand, the construction of the propagator for a central system evolving unitarily,
and on the other hand, the study of the central system undergoing a non-linear interaction with a
bath reservoir at equilibrium temperature T . The former case, although simpler and non-realistic,
allowed us to get a physical insight into the structure of a propagator formulated by means of
path integrals while working in the semiclassical realm. The later case allowed us to model a more
realistic physical system by including dissipation of energy and decoherence phenomena.

The propagator obtained within the open system framework generalizes naturally the prop-
agator obtained under Ullersma-Caldeira-Leggett model. Specifically, our calculation implies a
non-trivial quantum dynamics for the bath modes in phase-space, in clear contrast with the bilin-
ear coupling model where the dynamics of the bath modes is indistinguishable from its classical
evolution. Thus, our theory represents an approach to the true quantum behavior of the reservoir
while retaining the non-local character of the dynamics due to the structure of the interaction
potential. In this regard, we have also constructed a general semiclassical theory for the dynamics
of dissipative systems far from equilibrium with factorizing-initial conditions, which opens the
possibility for a formal and consistent study of the semiclassical spectral statistics of dissipative
systems [57, 58], the study of reaction-rate theory far from equilibrium and the description of
decoherent effects in terms of classical manifolds. Moreover, it could give some insights about the
evolution of entanglement in semiclassical terms [59].

Regarding the open questions and problems, we should mention that there is no clue that
serve as a guide to know if there is an specific way to transform the multivariate polynomial
Λj(α

′
j , β
′
j , t) in Ec. (4.67) into a suitable expression that can generate, after integration, the Airy

functions in phase-space. This situation is in clear contrast with the unitary case studied in
Sec. 2.4, where by means of suitable linear transformations, it was possible to recover the Airy
structure for the propagator in such a way that the interference pattern was originated from the
product of Airy functions as in in Ec. (2.56). Nonetheless, it worthy to mention that in spite of
this aspect of the propagator, all the physics, and the calculations based on them can start from
the mixed representation of the open system propagator given in Ec. (4.69). Finally, although
our description of open quantum systems is general enough, the inclusion of non-factorizing-initial
conditions and more general couplings to the bath [44,60] could be tasks to do.
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Appendix A

Wigner propagator for the Ullersma-Caldeira-Leggett model

Starting from the Wigner propagator found in Eq. (4.53)

G̃ =
1

2π~

r′′∫
r′

Dr

∫
Dr̃ exp

(
− i

~

∫ t

0
ds

[
ṙ ∧ r̃ +HS

(
r +

1

2
r̃

)
−HS

(
r− 1

2
r̃

)])
(A.1)

×
F∏
j=1

exp

∫ t

0
ds

 i

3
σj(s)

[[
Mj(s)γ

′
j + Vj(s)

]
β

+
˘̃qj(s)

~

]3


× exp

∫ t

0
ds

(
−iΘj(s)

[[
Mj(s)γ

′
j + Vj(s)

]
β

+
˘̃qj(s)

~

]
q̆j(s)

)
× δ

(
γ′′j −Mj(t)γ

′
j − Vj(t)

)
,

we can study a couple of interesting limits. Specifically, we would like to test it in two well known
scenarios. The first one corresponds to simple case of decoupling among the central system and
the set of bath modes. The second one is much more interesting than the former. Here, we
will consider the open system subject to bilinear interactions with the bath modes. As is widely
known, in these two special cases, the bath dynamics in phase-space is completely determined by
Dirac deltas along the classical trajectory [9]. This, in turn, means that there is no sign for true
quantum phenomena as far as the linearity gives a dynamical behavior indistinguishable from the
classic case.

A.1 Decoupling case with harmonic bath potential

To see if this propagator corresponds to the case of one isolated degree of freedom of the bath
times the propagator of the central DOF, we consider the decoupling case cj = 0. Then,

G̃ =
1

2π~

r′′∫
r′

Dr

∫
Dr̃ exp

(
− i

~

∫ t

0
ds

[
ṙ ∧ r̃ +HS

(
r +

1

2
r̃

)
−HS

(
r− 1

2
r̃

)])
(A.2)

×
F∏
j=1

exp

{
i

3

∫ t

0
dsσj(s)

([
Mj(s)γ

′
j

]
β

)3
}
δ
(
γ′′j −Mj(t)γ

′
j

)
.
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As expected, as long as there is no coupling constant, the central system and the bath becomes
independent. The dynamics of the central system evolve unitarily and is described completely
by the first line in the above propagator. Once cj has beee set to zero, the bath modes do not
carry any dependence of the fluctuation in the coordinate q̆(s). Therefore, the bath dynamics is
just the product of F non-interacting bath modes whose dynamics is governed by the second and
third line of the propagator above. Thus, the dynamics of the j-th bath mode is described by

G̃j(γ
′′
j , γ
′
j , t) = exp

{
i

3

∫ t

0
dsσj(s)

([
Mj(s)γ

′
j

]
β

)3
}
δ
(
γ′′j −Mj(t)γ

′
j

)
. (A.3)

Going one step forward, we can see from this expression that if the bath potential, which now is
decoupled from the system degree of freedom, becomes linear, i.e., quadratic at most, σj(s) = 0

and its dynamics will be given by

G̃j(γ
′′
j , γ
′
j , t) = δ

(
α′′j − α′j cos(ωjt) + β′j sin(ωjt)

)
δ
(
β′′j − α′j sin(ωjt)− β′j cos(ωjt)

)
. (A.4)

Under the inverse symplectic Fourier transform we obtain

Gj(R̆
′′
j , R̆

′
j , t) =δ

(
Q̆′′j − Q̆′j cos(ωjt)− P̆ ′j sin(ωjt)

)
δ
(
P̆ ′′j − P̆ ′j cos(ωjt) + Q̆′j sin(ωjt)

)
. (A.5)

Finally, by means of the Eq. (4.22), the bath propagator takes the form

GB(R′′j ,R
′
j , t) =

F∏
j=1

δ

(
Q′′j −Q′j cos(ωjt)−

P ′j
mjωj

sin(ωjt)

)
(A.6)

× δ
(
P ′′j − P ′j cos(ωjt) +mjωjQ

′
j sin(ωjt)

)
.

A.2 Linear bath potential

In this case, cj 6= 0 and Bj = 0; therefore, σj(s) = 0. Then, the propagator in Eq. (4.53) takes
the form

G̃ =
1

2π~

r′′∫
r′

Dr

∫
Dr̃ exp

(
− i

~

∫ t

0
ds

[
ṙ ∧ r̃ +HS

(
r +

1

2
r̃

)
−HS

(
r− 1

2
r̃

)])
(A.7)

×
F∏
j=1

exp

{
−i

∫ t

0
dsΘj(s)

[[
Mj(s)γ

′
j + Vj(s)

]
β

+
˘̃qj(s)

~

]
q̆j(s)

}
× δ

(
γ′′j −Mj(t)γ

′
j − Vj(t)

)
.

As we did before, let us focus our attention on the j-th term of the SB part of the propagator

G̃j = exp

{
−i

∫ t

0
dsΘj(s)

[[
Mj(s)γ

′
j + Vj(s)

]
β

+
˘̃qj(s)

~

]
q̆j(s)

}
(A.8)

× δ
(
γ′′j −Mj(t)γ

′
j − Vj(s)

)
.



The linearization of the interaction potential implies that

U =
F∑
j=1

(
1

2
mjω

2
jQ

2
j − cjqQj + q2

c2
j

2mjω2
j

)
, (A.9)

whereas
θj(t) = ωjt. (A.10)

Hence, by applying the the inverse symplectic Fourier transform to Eq. (A.8) we find that

Gj = exp

{
i

~

(
ω2
j

∫ t

0
ds

∫ s

0
du sin [ωj(s− u)] ˘̃qj(u)q̆j(s)− ωj

∫ t

0
ds˘̃qj(s)q̆j(s)

)}
(A.11)

× exp

{
i

~

(
ωjQ̆

′
j

∫ t

0
ds cos(ωjs)˘̃qj(s) + ωjP̆

′
j

∫ t

0
ds sin(ωjs)˘̃qj(s)

)}
× δ

(
Q̆′′j − Q̆′j cos(ωjt)− P̆ ′j sin(ωjt)− ωj

∫ t

0
ds sin[ωj(t− s)]q̆j(s)

)
× δ

(
P̆ ′′j − P̆ ′j cos(ωjt) + Q̆′j sin(ωjt)− ωj

∫ t

0
ds cos[ωj(t− s)]q̆j(s)

)
.

Thus, putting together this result with the system part of the propagator, and by means of
Eq. (4.22), we obtain the final form of the Wigner propagator as

G(r′′,
{
R′′j
}
, t; r′,

{
R′j
}
, 0) =

1

2π~

r′′∫
r′

Dr

∫
Dr̃ exp

(
− i

~
SS[r, r̃, t]

)
(A.12)

×
F∏
j=1

δ
(
Q′′j −Qcl

j (P ′j , Q
′
j , t)

)
δ
(
P ′′j − P cl

j (P ′j , Q
′
j , t)

)
× exp

{
i

~

(
cj

∫ t

0
dsQcl

j (P ′j , Q
′
j , s)q̃(s)−

c2
j

mjω2
j

∫ t

0
dsq̃(s)q(s)

)}
.

This result reproduces the propagator written in Ec. (3.13). It has the special feature of being
written in terms of the classical trajectory of the bath modes in phase-space.





Appendix B

Properties of the T̂ (u,v) and d̂(p,q) operators

B.1 Definitions

Let u = (u1, u2, . . . , uf ) be a collection of real coordinates and v = (v1, v2, . . . , vf ) a set of
real momentum variables. Let q̂ = (q̂1, q̂2, . . . , q̂f ) and p̂ = (p̂1, p̂2, . . . , p̂f ) be the position and
momentum operators. The displacement operator (DO) is defined by

T̂ (u,v) = exp

[
i

~
(u · p̂ + v · q̂)

]
. (B.1)

By taking the double Fourier transform of T̂ (−u,−v), we can define

d̂(p̂, q̂) =
1

(2π~)f

∫
dudv exp

[
i

~
(u · p + v · q)

]
T̂ (−u,−v) (B.2)

with r, s symbolizing momenta and coordinate variables respectively. To see a more complete
discussion about the construction and interpretation given to these operators, see Ref. [11,61].

B.2 Properties

1. The composition rule for two DO is given by

T̂ (u,v)T̂ (u′,v′) = exp

[
i

2~
(u · v′ − u′ · v)

]
T̂ (u + u′,v + v′). (B.3)

Proof. Let’s consider the composition of two DO operators

T̂ (u,v)T̂ (u′,v′) = exp

[
i

~
(u · p̂ + v · q̂)

]
exp

[
i

~
(u′ · p̂ + v′ · q̂]

]
Seting Â = i

~(u · p̂ + v · q̂), and B̂ = i
~(u′ · p̂ + v′ · q̂), we obtain

[Â, B̂] =
i

~
(u · v′ − u′ · v)1̂, [Â, [Â, B̂]] = [B̂, [Â, B̂]] = 0̂.

By means of the Glauber’s formula

exp(Â) exp(B̂) = exp(Â+ B̂) exp

(
1

2
[Â, B̂]

)
,
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we obtain
T̂ (u,v)T̂ (u′,v′) = exp

(
i

2~
(u · v′ − u′ · v)

)
T̂ (u + u′,v + v′).

2. The inverse DO is given by

T̂−1(u,v) = T̂ (−u,−v). (B.4)

Proof. From property 1, we have

T̂ (u,v)T̂ (−u,−v) = exp

(
i

2~
(u · v − u · v)

)
T̂ (u− u,v − v)

=T̂ (0,0) = 1̂.

3. The DO is unitary:
T̂ †(u,v) = T̂−1(u,v). (B.5)

Proof. Taking the Hermitian conjugate of the D.O.

T̂ †(u,v) = exp

(
− i

~
(u · p̂ + v · q̂)

)
= T̂ (−u,−v)

= T̂−1(u,v).

4. Trace of the DO
Tr
[
T̂ (u,v)

]
= (2π~)fδ(u)δ(v) (B.6)

Proof. By using Glauber’s formula,

Tr
[
T̂ (u,v)

]
=

∫
dpdqdq′e

i
~(u·p+v·q+ 1

2
u·v)〈q′|p〉〈p|q〉〈q|q′〉.

Knowing that

〈q′|p〉 = (2π~)−
f
2 exp

(
i

~
q′ · p

)
, 〈q|q′〉 = δ(q′ − q),

we obtain

Tr
[
T̂ (u,v)

]
=

1

(2π~)f

∫
dpdqe

i
~(u·p+v·q+ 1

2
u·v),

=(2π~)f δ(u)δ(v).

5. d̂(p̂, q̂) is Hermitian
d̂†(p̂, q̂) = d̂(p̂, q̂). (B.7)



Proof. Since T̂ †(−u,−v) = T̂−1(−u,−v) = T̂ (u,v), we have

d̂†(p̂, q̂) =
1

(2π~)f

∫
dudv exp

[
− i

~
(u · p + v · q)

]
T̂ (u,v)

=
1

(2π~)f

∫
du′dv′ exp

[
i

~
(u′ · p + v′ · q)

]
T̂ (−u′,−v′)

=d̂(p̂, q̂).

6. Normalization in phase space:

1

(2π~)f

∫
dpdqd̂(p̂, q̂) = 1̂ (B.8)

Proof. By calculating the integral over the whole phase space, we obtain

1

(2π~)f

∫
dpdqd̂(p̂, q̂) =

1

(2π~)2f

∫
dudve−

i
~ (u·p̂+v·q̂)

[∫
dpe

i
~u·p

] [∫
dqe

i
~v·q

]
=

∫
dudv exp

(
− i

~
(u · p̂ + v · q̂)

)
δ(u)δ(v)

=1̂.

7. Trace of d̂(p̂, q̂)

Tr[d̂(p̂, q̂)] = 1. (B.9)

Proof. By using property 4,

Tr[d̂(p̂, q̂)] =
1

(2π~)f

∫
dudv exp

[
i

~
(u · p + v · q)

]
Tr[T̂ (−u,−v)]

=

∫
exp

[
i

~
(u · p + v · q)

]
δ(u)δ(v)

=1.

8. Composition of d̂(r̂)d̂(r̂′).

d̂(r̂)d̂(r̂′) =
2

π~

∫
dr′′d̂(r̂′) exp

[
i

~
∆3(r′′, r′, r)

]
. (B.10)

Proof. From definition (B.2),

d̂(r̂)d̂(r̂′) =
1

(2π~)2f

∫
e

i
~ [u·p+u′·p′+v·q+v′·q′]e

i
2~ (u·v′−u′·v)1̂

× T̂ (−u− u′,−v − v′) dudu′dvdv′

The scalar phase above can be written as

u · p + v · q + u′ · p′′ + v′ · q′′,



where we have introduced the change of variables p′′ = (p′ − v/2), q′′ = (q′ + u/2) with
measures related by dudv = dp′′dq′′. By means of this expressions, the phase can be written
as

2(q′′ − q′) · p− 2(p′′ − p′) · q + u′ · p′′ + v′ · q′′.

By introducing the second change of variables u′′−u′ = 2(q′′−q′), and (v′′−v′) = 2(p′−p′′),
we obtain the new form of the phase as

u′′ · p′′ + v′′ · q′′ + 2[(p′′ · q′ − q′′ · p′) + (p′ · q− q′ · p) + (p · q′′ − q · p′′)],

which, by means of the symplectic product, can be written as

u′′ · p′′ + v′′ · q′′ + 2[r′′ ∧ r′ + r′ ∧ r + r ∧ r′′] = u′′ · p′′ + v′′ · q′′ + ∆3(r′′, r′, r) (B.11)

where we have defined the quantity ∆3(r′′, r′, r) as a sum of the cyclic symplectic product
of its arguments. Thus,

d̂(r̂)d̂(r̂′) =
2

π~

∫
exp

[
i

~
∆3(r′′, r′, r)

]
× 1

(2π~)f
exp

[
i

~
(u′′ · p′′ + v′′ · q′′)

]
T̂ (−u′′,−v′′) du′′dv′′dp′′dq′′

and using the definition of the d̂ operator, we can write the final form for the composition

d̂(r̂)d̂(r̂′) =
2

π~

∫
d̂(r̂′′) exp

[
i

~
∆3(r′′, r′, r)

]
dr′′.

9. Weyl symbol for the product of two operators

A(r) =
1

(π~)2

∫
dr′dr′′A1(r′)A2(r′′) exp

[
i

~
∆3(r, r′′, r′)

]
. (B.12)

Proof. The Weyl symbol is defined by A(r) = TW [Â] = Tr[Â(r̂)d̂(r̂)]. Moreover, by formally
inverting this equation we obtain

Â(r̂) =
1

2π~

∫
drA(r)d̂(r̂).

Let Â = Â1Â2 be a product of two operators which are functions of r̂. Then,

A(r) =
1

(2π~)2

∫
dr′dr′′A1(r′)A2(r′′)Tr[d̂(r̂′)d̂(r̂′′)d̂(r̂)].



By using properties 7 and 8,

Tr[d̂(r′)d̂(r′′)d̂(r)] =
2

π~

∫
dr1 exp

[
i

~
∆3(r1, r

′′, r′)

]
Tr[d̂(r1)d̂(r)]

=
4

(π~)2

∫
dr1dr2 exp

[
i

~
(
∆3(r1, r

′′, r′) + ∆3(r2, r, r1)
)]
.

Considering the phase in the exponential

∆3(r1, r
′′, r′) + ∆3(r2, r, r1) = 2

(
r′′ ∧ r′ + r1 ∧ (r′′ − r′ − r) + r2 ∧ (r− r1)

)
,

together with ∫
dr2 exp

[
2i

~
r2 ∧ (r− r1)

]
= (π~)2δ(r− r1),

allows us to obtain

A(r) =
1

(π~)2

∫
dr′dr′′A1(r′)A2(r′′) exp

[
2i

~
(
r ∧ r′′ + r′′ ∧ r′ + r′ ∧ r

)]
=

1

(π~)2

∫
dr′dr′′A1(r′)A2(r′′) exp

[
i

~
∆3(r, r′′, r′)

]
.

10. Weyl symbol for the product of three operators

B(r) =
1

(π~)2

∫
dr1dr2dr3B1(r1)B2(r2)B3(r3) (B.13)

× exp

[
2i

~
(r ∧ r3 + r2 ∧ r1)

]
δ[r + r2 − (r3 + r1)].

Proof. Let B̂ = B̂1B̂2B̂3 = B̂12B̂3, with all the operators being functions of p̂, q̂. Then,
by property 9,

B(r) =
1

(π~)2

∫
dr′dr3B12(r′)B3(r3) exp

[
i

~
∆3(r, r3, r

′)

]
,

The Weyl symbol of the B̂12 operator is given by

B12(r′) =
1

(π~)2

∫
dr1dr2B1(r1)B2(r2) exp

[
i

~
∆3(r′, r2, r1)

]
.

Therefore,

B(r) =
1

(π~)4

∫
dr′dr1dr2dr3B1(r1)B2(r2)B3(r3)

× exp

[
i

~
(
∆3(r, r3, r

′) + ∆3(r′, r2, r1)
)]
.



Hence, by integration over the r′ variables we arrive to

B(r) =
1

(π~)2

∫
dr1dr2dr3B1(r1)B2(r2)B3(r3)

× exp

[
2i

~
(r ∧ r3 + r2 ∧ r1)

]
δ[r + r2 − (r3 + r1)].



Appendix C

Noise correlation function in the Ullersma-Calderira-Leggett

model

For a bilinear coupling among the central system S and the linear bath modes B, the hamil-
tonian operator of the universe takes the form [37]

Ĥ = ĤS + ĤB + ĤSB, (C.1)

where

ĤS =
p̂2

2m
+ V̂ (q̂), (C.2)

ĤB =
F∑
j=1

(
1

2mj
P̂ 2
j +

mj

2
ω2
j Q̂

2
j

)
,

ĤSB = −q̂
F∑
j=1

cjQ̂j + q̂2
F∑
j=1

c2
j

2mjω2
j

.

In the Heisenberg picture, the equations of motion for the environmental degrees of freedom are

˙̂
Pj =

i

~
[Ĥ, P̂j ] =

i

~
([ĤB, P̂j ] + [ĤSB, P̂j ]) , ([ĤS, P̂j ] = 0) (C.3)

where

[ĤB, P̂j ] = i~mjω
2
j Q̂j , (C.4)

[HSB, P̂j ] = i~cj q̂.

Then
˙̂
Pj = cj q̂ −mjω

2
j Q̂j . (C.5)

On the other hand
˙̂
Qj =

i

~
[Ĥ, Q̂j ] =

i

~
[ĤB, Q̂j ] =

P̂j
mj

, (C.6)

completing the set of equations for the bath modes. In relation with the central system S, the
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Heisenberg equations are

˙̂p =
i

~
[Ĥ, p̂] =

i

~
([ĤS, p̂] + [ĤSB, p̂]) = −∂V̂

∂q̂
+

F∑
j=1

(
cjQ̂j − q̂

c2
j

mjω2
j

)
, (C.7)

and
˙̂q =

i

~
[Ĥ, q̂] =

i

~
[ĤS, q̂] =

p̂

m
. (C.8)

We have obtained two sets of coupled differential equations. The standard procedure is to solve the
bath modes equations and then to use this solutions into the central system equation of motion.
As can be seen from Eqs. (C.5, C.6) we can write them as a single equation having the form

¨̂
Qj + ω2

j Q̂j =
cj
mj

q̂. (C.9)

Here we have a damped equation of motion for the system coordinate. The external force being
represented by cj q̂. The key idea here is to suppose q̂(t) as a stochastic function of time already
given, i.e., the system coordinate couples to every oscillator in the bath in a random way such that,
the differential equations listed above (for any j) are decoupled and can be solved analytically.
The solution is given by

Q̂j(t) = Q̂j(0) cos(ωjt) +
P̂j(0)

mjωj
sin(ωjt) +

cj
mjωj

∫ t

0
q̂(s) sin[ωj(t− s)]ds. (C.10)

This solution gives the the general form of the coordinates for the bath modes. By using this
result into the central system equation

m¨̂q +
∂V̂

∂q̂
+ q̂

F∑
j=1

c2
j

mjω2
j

=

F∑
j=1

cjQ̂j , (C.11)

we obtain

m¨̂q +
∂V̂

∂q̂
−
∫ t

0
ds

F∑
j=1

c2
j

mjωj
sin[ωj(t− s)]q̂(s) + q̂

F∑
j=1

c2
j

mjω2
j

(C.12)

=

F∑
j=1

cj

(
Q̂j(0) cos(ωjt) +

P̂j(0)

mjωj
sin(ωjt)

)
.

By means of integration by parts for the third term on the left-hand side of the above equation,

∫ t

0
ds

F∑
j=1

c2
j

mjωj
sin[ωj(t− s)]q̂(s) (C.13)

=

∫ t

0
ds

F∑
j=1

c2
j

mjωj

{
d

ds

[
q̂(s) cos[ωj(t− s)]

ωj

]
− 1

ωj
cos[ωj(t− s)] ˙̂q(s)

}

=
F∑
j=1

c2
j

mjω2
j

[q̂(t)− q̂(0) cos(ωjt)]−
∫ t

0
ds

F∑
j=1

c2
j

mjω2
j

cos[ωj(t− s)] ˙̂q(s),



we obtain,

m¨̂q +
∂V̂

∂q̂
+

∫ t

0
ds

F∑
j=1

c2
j

mjω2
j

cos[ωj(t− s)] ˙̂q(s) (C.14)

=
F∑
j=1

cj

[(
Q̂j(0)− cj

mjω2
j

q̂(0)

)
cos(ωjt) +

P̂j(0)

mjωj
sin(ωjt)

]
.

By means of the introduction of the damping kernel

γ(t) =
1

m

F∑
j=1

c2
j

mjω2
j

cos(ωjt), (C.15)

the equation of motion for q̂(t) takes the form

m¨̂q +
∂V̂

∂q̂
+m

∫ t

0
dsγ(t− s) ˙̂q(s) = ξ̂(t), (C.16)

with ξ̂(t) the operator-valued fluctuating force defined by

ξ̂(t) =
F∑
j=1

cj

[(
Q̂j(0)− cj

mjω2
j

q̂(0)

)
cos(ωjt) +

P̂j(0)

mjωj
sin(ωjt)

]
. (C.17)

The term mγ(t)q̂(0) is known as the transient. For weak coupling one can write the fluctuating
force as ξ̂(t) = ζ̂(t)−mγ(t)q̂(0). Thus,

ζ̂(t) =
F∑
j=1

cj

[
Q̂j(0) cos(ωjt) +

P̂j(0)

mjωj
sin(ωjt)

]
. (C.18)

An important quantity to characterize the fluctuating force is the two-time correlation function
〈ζ̂(t)ζ̂(0)〉B. From its definition we obtain

〈ζ̂(t)ζ̂(0)〉B =
∑
j,k

cjck

〈(
Q̂j(0) cos(ωjt) +

P̂j(0)

mjωj
sin(ωjt)

)
Q̂k(0)

〉
B

(C.19)

=
∑
j,k

cjck

(
〈Q̂j(0)Q̂k(0)〉B cos(ωjt) +

1

mjωj
〈P̂j(0)Q̂k(0)〉B sin(ωjt)

)
.

In thermal equilibrium the expectation values fro the operator products above can be calculated
by means of the density operator

ρ̂ =
1

ZB
exp

(
−βĤB

)
. (C.20)



Thus,

〈Q̂j(0)Q̂k(0)〉B =TrB
(
Q̂j(0)Q̂k(0)ρ̂B

)
(C.21)

=
1

ZB
TrB

(
Q̂j(0)Q̂k(0)e−βĤB

)
,

where

ZB = TrB
(
e−βĤB

)
(C.22)

=
F∏
n=1

( ∞∑
m=0

e−βEn,m

)

=
F∏
n=1

1

2 sinh
(
β~ωn

2

) .
Then

〈Q̂j(0)Q̂k(0)〉B =

[
F∏
n=1

2 sinh

(
β~ωn

2

)]
TrB

(
Q̂j(0)Q̂k(0)e−βĤB

)
. (C.23)

By means of

Q̂j(0) =

√
~

2mjωj

(
â†j + âj

)
, (C.24)

we obtain

TrB
(
Q̂j(0)Q̂k(0)e−βĤB

)
=

~
2
√
mjmkωjωk

 F∏
n6=j,k

1

2 sinh
(
β~ωn

2

)
 (C.25)

×
∞∑
m=0

e−β(Ej,m+Ek,m) 〈jm, km| â†j âk + âkâ
†
j |jm, km〉 .

Therefore

〈Q̂j(0)Q̂k(0)〉B =
2~

√
mjmkωjωk

sinh

(
β~ωj

2

)
sinh

(
β~ωk

2

)
(C.26)

×
∞∑
m=0

e−β(Ej,m+Ek,m) 〈jm, km| â†j âk + âkâ
†
j |jm, km〉 .



When j 6= k, 〈jm, km| â†j âk + âkâ
†
j |jm, km〉 = 0. When j = k, â†j âj + âj â

†
j = 1 + 2â†j âj . Thus,

〈Q̂2
j (0)〉B =

~
mjωj

sinh

(
β~ωj

2

) ∞∑
m=0

e−βEj,m 〈jm| 1 + 2â†j âj |jm〉 (C.27)

=
2~
mjωj

sinh

(
β~ωj

2

) ∞∑
m=0

(
m+

1

2

)
e−βEj,m

=− 1

mjβωj
sinh

(
β~ωj

2

)
d

dωj

1

sinh
(
β~ωj

2

)
=

~
2mjωj

coth

(
β~ωj

2

)
.

Therefore,

〈Q̂j(0)Q̂k(0)〉B =δjk
~

2mjωj
coth

(
β~ωj

2

)
. (C.28)

Following the same steps, it is straightforward to prove that

〈P̂j(0)Q̂k(0)〉B = −i
~
2
δjk. (C.29)

Thus, by means of the these two results, Eq. (C.19) takes the form

〈ζ̂(t)ζ̂(0)〉B =

F∑
j=1

~c2
j

mjωj

[
coth

(
β~ωj

2

)
cos(ωjt)− i sin(ωjt)

]
. (C.30)

By introducing the spectral density as

I(ω) = π

F∑
j=1

c2
j

2mjωj
δ(ω − ωj), (C.31)

the noise correlation function takes the form

〈ζ̂(t)ζ̂(0)〉B = ~
∫ ∞

0

dω

π
I(ω)

[
coth

(
~βω

2

)
cos(ωt)− i sin(ωt)

]
. (C.32)

It is also possible to show, by following the above calculation, that

〈ζ̂(0)ζ̂(t)〉B = ~
∫ ∞

0

dω

π
I(ω)

[
coth

(
~βω

2

)
cos(ωt) + i sin(ωt)

]
. (C.33)

Thus, 〈ζ̂(0)ζ̂(t)〉∗B = 〈ζ̂(t)ζ̂(0)〉B. By convenience, we define 〈ζ̂(t)ζ̂(0)〉B = 〈ζ̂+(t)ζ̂+(0)〉B and
〈ζ̂(0)ζ̂(t)〉B = 〈ζ̂−(t)ζ̂−(0)〉B, such that

〈ζ̂±(t)ζ̂±(0)〉B = ~
∫ ∞

0

dω

π
I(ω)

[
coth

(
~βω

2

)
cos(ωt)∓ i sin(ωt)

]
. (C.34)

The definition of the correlation 〈ζ̂−(t)ζ̂−(0)〉B is just a matter of convenience for our purposes
of studying the semiclassical stochastic approach. Specifically, we wanted to translate into phase-



space a study that was previously done to the propagator within the configuration space in refer-
ence [51]. In that work, they formulate an study of the expected value of the influence functional
in the configuration space and the connection that from that stochastic approach emerges with
the dynamics of an open system. In this way, the statistical study of the influence functional is
automatically transferred to the phase of influence, that is, the influence phase, and by extension,
to the correlation functions of the bath.

In this regard, the use that we have made in our work of the complex conjugate of the noise
correlation function 〈ζ̂(0)ζ̂(t)〉B adjust the expected results for the Wigner propagator already
obtained by the open system formalism.



Appendix D

Weyl transforms for products of canonical operators

D.1 Weyl transform of products having the form p̂mq̂n and q̂np̂m

Let us consider the operator product Â = p̂mq̂n. From property 9 in Appendix B, the Weyl
symbol of the product of these two operators is given by

A(r) =
1

(π~)2

∫
dr′dr′′ A1(r′)A2(r′′) exp

[
i

~
∆3(r, r′′, r′)

]
.

Thus,

(p̂mq̂n)W =
1

(π~)2

∫
dr′(p′)m exp

(
2i

~
(r′ ∧ r)

)
(D.1)

×
∫

dp′′dq′′(q′′)n exp

(
2i

~
(p′′Q− q′′P )

)
,

where Q = q′ − q and P = p′ − p. Let us consider initially the integrals in the p′′, q′′ variables,
such that ∫

dp′′dq′′(q′′)n exp

(
2i

~
(p′′Q− q′′P )

)
=

∫
dp′′ exp

(
2i

~
p′′Q

)
(D.2)

×
∫

dq′′(q′′)n exp

(
−2i

~
q′′P

)
.

We can write the second integral kernel as

(q′′)n exp

(
−2i

~
q′′P

)
=

(
− ~

2i

)n dn

dPn
exp

(
−2i

~
q′′P

)
, (D.3)

such that the result of the integral in (D.2) is∫
dp′′dq′′(q′′)n exp

(
2i

~
(p′′Q− q′′P )

)
= (π~)2

(
− ~

2i

)n
δ(Q)

dn

dPn
δ(P ). (D.4)
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Then, from (D.1),

(p̂mq̂n)W =

(
− ~

2i

)n ∫
dr′(p′)m exp

(
2i

~
(r′ ∧ r)

)
δ(Q)

dn

dPn
δ(P ) (D.5)

=

(
− ~

2i

)n ∫
dP (p+ P )m exp

(
2i

~
qP

)
dn

dPn
δ(P ).

By means of the Dirac delta identity [62]∫ ∞
−∞

f(x)
dn

dxn
δ(x− x0)dx = (−1)n

(
dn

dxn
f(x)

)
x=x0

, (D.6)

we can write
(p̂mq̂n)W =

(
~
2i

)n dn

dPn

[
(p+ P )m exp

(
2i

~
qP

)]
P=0

. (D.7)

On the other hand, if we want to find the Weyl symbol of the operator B̂ = q̂np̂m, we just
have to follow the same procedure as before to find

(q̂np̂m)W =

(
− ~

2i

)m dm

dQm

[
(q +Q)n exp

(
−2i

~
pQ

)]
Q=0

. (D.8)

The results found in (D.6) and (D.8) are quite interesting and useful, because they offer the
advantage of using derivatives, instead of integrals, to calculate Weyl symbols in a easy and fast
way.

Finally, by means of the binomial theorem we can write the above expressions as

(p̂mq̂n)W =

(
~
2i

)n m∑
k=0

(
m

k

)
pm−k

dn

dPn

[
P k exp

(
2i

~
qP

)]
P=0

, (D.9)

and

(q̂np̂m)W =

(
− ~

2i

)m n∑
k=0

(
n

k

)
qn−k

dn

dQm

[
Qk exp

(
−2i

~
pQ

)]
Q=0

. (D.10)

D.2 Weyl transform of the Heisenberg equations for the canonical
operators

Within the Heisenberg picture the evolution of an operator Â is determined by the equation

dÂ

dt
=
i

~
[Ĥ, Â]. (D.11)

Applied to the canonical operators, the equation allows to study its dynamical evolution in terms
of differential-operator equations. Nonetheless, we are mainly interested to study the dynamics
directly in phase-space rather than the Hilbert space of operators. This choice leaves us with two
possibilities: On one hand we can apply the Weyl transform to the Hamiltonian operators under
study and then, once in phase-space, resort to the classical equations of Hamilton to obtain the



differential equations. On the other hand we can proceed by transforming directly the Heisenberg
equations of motion for the canonical operators to obtain the differential equations in terms
of scalar functions. Although the first choice is just a straightforward application of the Weyl
transform operation, we will make use of the results of the preceding section to develop the latter
procedure.

Let us consider the Weyl transform on the Heisenberg equation for the canonical operator q̂1(
dq̂

dt

)
W

=
i

~
[Ĥ, q̂]W. (D.12)

On the left-hand side, the transform act on the coordinate operator in a straightforward way.
Therefore, it is the right-hand side the one of interest for us. In the most simple case of a
Hamiltonian for an isolated DOF having the standard form Ĥ = 1

2m p̂
2 + V (q̂), we have

[Ĥ, q̂]W =
1

2m

(
p̂2q̂ − q̂p̂2

)
W . (D.13)

As long as the Weyl transform is a linear operation, we can apply it to these two terms by direct
use of Eqs. (D.9), (D.10). Then,

(
p̂2q̂
)
W = p2q − i~p, and

(
q̂p̂2
)
W = p2q + i~p. Therefore,

Eq. (D.12) becomes the classical Hamilton equation for the scalar coordinate q

dq

dt
=

p

m
. (D.14)

Let us now consider the Weyl transform on the Heisenberg equation for the canonical operator p̂,(
dp̂

dt

)
W

=
i

~
[Ĥ, p̂]W (D.15)

=
i

~
[V (q̂), p̂]W.

Since we have not made any supposition about the mathematical for of the potential, we should
make use of the Eq. (1.11) to calculate the transform of the two products above. Thus,

(
V̂ p̂
)

W
=

∫
du exp

{
− i

~
pu

}〈
q +

u

2

∣∣∣V (q̂)p̂
∣∣∣q − u

2

〉
(D.16)

=

∫
du exp

{
− i

~
pu

}
V
(
q +

u

2

)〈
q +

u

2

∣∣∣ p̂ ∣∣∣q − u

2

〉
=− i~

∫
du exp

{
− i

~
pu

}
V
(
q +

u

2

) ∂

∂u
δ(u)

=i~
∂

∂u

[
exp

{
− i

~
pu

}
V
(
q +

u

2

)]
u=0

=pV (q) +
i~
2

∂V (q)

∂q
.

1For the sake of simplicity, we will use the label W to indicate the operation of applying the Weyl transform to
the quantity it is attached to.



Following the same procedure for the another transform, we obtain(
p̂V̂
)

W
=pV (q)− i~

2

∂V (q)

∂q
. (D.17)

Thus, Eq. (D.15) becomes

dp

dt
= −∂V (q)

∂q
. (D.18)

D.3 Equations of motion for the bath modes

The results obtained in the preceding section can be extended to include the more interesting
case of an open system with hamiltonian

Ĥ = ĤS + ĤB + ĤSB, (D.19)

where

ĤS =
p̂2

2m
+ V̂ (q̂), (D.20)

ĤB =
F∑
j=1

(
1

2mj
P̂ 2
j +

mj

2
ω2
j Q̂

2
j

)
,

ĤSB = −q̂
F∑
j=1

cjQ̂j + q̂2
F∑
j=1

c2
j

2mjω2
j

.

The Heisenberg equation of motion for the operator Q̂j is

dQ̂j
dt

=
i

~
[Ĥ, Q̂j ] (D.21)

dQ̂j
dt

=
i

~
[ĤB + ĤSB, Q̂j ].

Then,
i

~
[ĤB, Q̂j ] =

P̂j
mj

, (D.22)

and

i

~
[ĤSB, Q̂j ] = − i

~
cj [q̂ ⊗ Q̂j , ÎS ⊗ Q̂j ] (D.23)

= − i
~
cj q̂ ⊗

(
Q̂jQ̂j − Q̂jQ̂j

)
= 0̂.

Therefore, by following the result given in Ec (D.14), the weyl transform of Ec (D.21),(
dQ̂j
dt

)
W

=
i

~
[Ĥ, Q̂j ]W, (D.24)



becomes
dQj
dt

=
Pj
mj

. (D.25)

On the other hand, for the momentum operator P̂j we have

dP̂j
dt

=
i

~
[Ĥ, P̂j ] (D.26)

=
i

~
[ĤB + ĤSB, P̂j ],

where

[ĤB, P̂j ] = [V̂B(Q̂j), P̂j ]. (D.27)

By following the same procedure of the preceding section we obtain

i

~
[V̂B(Q̂j), P̂j ]W = −∂VB

∂Qj
. (D.28)

Meanwhile,

i

~
[ĤSB, P̂j ] = − i

~
cj [q̂ ⊗ Q̂j , ÎS ⊗ P̂j ] (D.29)

= − i
~
cj q̂ ⊗

(
Q̂jP̂j − P̂jQ̂j

)
= − i

~
cj q̂ ⊗ [Q̂j , P̂j ]

= cj q̂ ⊗ ÎB.

Therefore, by knowing that the Weyl transform of the identity operator is the number one, we
obtain

i

~
[ĤSB, P̂j ]W = cj

(
q̂ ⊗ ÎB

)
W

(D.30)

= cjq.

Finally, (
dP̂j
dt

)
W

=
dPj
dt

=
i

~
[Ĥ, P̂j ]W (D.31)

=− ∂VB

∂Qj
+ cjq

=−mjω
2
jQ

2
j + cjq.





Appendix E

Properties of W (p,q) and GW(r′′, t, r′, 0)

Starting from the definitions of the Wigner distribution function and the Wigner propagator
made in the main text, we will prove some key properties that are fulfilled by these mathematical
objects. Special emphasis is given to the coordinate and momentum representation of the Wigner
function.

E.1 Wigner function in the |q〉 and |p〉 representations

The Wigner function is defined as the Weyl transform of the density operator as

W (p,q) =
1

(2π~)f
Tr[ρ̂(p̂, q̂)d̂(p,q)], (E.1)

=
1

(2π~)2f

∫
dudv exp

[
i

~
(u · p + v · q)

]
Tr
[
ρ̂ T̂ (−u,−v)

]
.

where d̂ has been defined in appendix B. In order to calculate the trace, we will use the coordinate
basis {|q′〉} such that

Tr
[
ρ̂ T̂ (−u,−v)

]
=

∫
dq′ exp

[
− i

2~
(u · v + 2v · q′)

] 〈
q′
∣∣ ρ̂ exp

[
i

~
u · p̂

] ∣∣q′〉 (E.2)

=

∫
dq′e−

i
2~ (u·v+2v·q′) 〈q′∣∣ ρ̂ ∣∣q′ + u

〉
,

Where, in the last line, we have made use of the translation operator acting on the |q′〉 state.
Hence,

W (p,q) =
1

(2π~)2f

∫
dq′dudve

i
~ (u·p+v·q− 1

2
u·v−v·q′) 〈q′∣∣ ρ̂ ∣∣q′ + u

〉
(E.3)

=
1

(2π~)f

∫
dq′due

i
~u·p δ

[
q′ −

(
q− u

2

)] 〈
q′
∣∣ ρ̂ ∣∣q′ + u

〉
=

∫
due

i
~u·p

〈
q− u

2

∣∣∣ ρ̂

(2π~)f

∣∣∣q +
u

2

〉
.

An equivalent version can be obtained if we consider the substitution u→ −u,

W (p,q) =

∫
due−

i
~u·p

〈
q +

u

2

∣∣∣ ρ̂

(2π~)f

∣∣∣q− u

2

〉
. (E.4)
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The wigner function can be written in the momentum representation by means of a change of
basis as

W (p,q) =

∫
dwe−

i
~q·w

〈
p +

w

2

∣∣∣ ρ̂

(2π~)f

∣∣∣p− w

2

〉
(E.5)

=

∫
dwe

i
~q·w

〈
p− w

2

∣∣∣ ρ̂

(2π~)f

∣∣∣p +
w

2

〉
.

E.2 Properties of the Wigner function

1. Wigner function is real.

Proof.

W ∗(p,q) =
1

(2π~)f

(
Tr[ρ̂(p̂, q̂)d̂(p,q)]

)∗
=

1

(2π~)f
Tr[d̂†(p,q)ρ̂†(p̂, q̂)]

=
1

(2π~)f
Tr[ρ̂(p̂, q̂)d̂(p,q)]

=W (p,q).

2. Wigner function is normalized in phase space.

Proof. ∫
dpdqW (p,q) =

∫
dudpdq exp

{
− i

~
p · u

}〈
q +

u

2

∣∣∣ ρ̂

(2π~)f

∣∣∣q− u

2

〉
=

∫
dudq

〈
q +

u

2

∣∣∣ ρ̂ ∣∣∣q− u

2

〉[∫ dp

(2π~)f
exp

{
− i

~
p · u

}]
=

∫
dudq

〈
q +

u

2

∣∣∣ ρ̂ ∣∣∣q− u

2

〉
δ(u)

=

∫
dq 〈q| ρ̂ |q〉

=Tr [ρ̂] = 1.

3. The marginals densities of the Wigner function are the position and momentum
probability densities.

Proof. By considering a general mixed state described by the operator ρ̂ =
∑

i Pi |ψi〉 〈ψi|,
we obtain



? Coordinate probability density.∫
dpW (p,q) =

∫
dudp exp

{
− i

~
p · u

}〈
q +

u

2

∣∣∣ ρ̂

(2π~)f

∣∣∣q− u

2

〉
=

∫
du
〈
q +

u

2

∣∣∣ ρ̂ ∣∣∣q− u

2

〉
δ(u)

= 〈q| ρ̂ |q〉

=
∑
i

Pi〈q|ψi〉〈ψi|q〉

=
∑
i

Pi|ψi(q)|2.

For the special case of a pure state, ρ̂ = |ψ〉 〈ψ|,∫
dpW (p,q) = |ψ(q)|2.

? Momentum probability density.∫
dqW (p,q) =

∫
dwdq exp

{
− i

~
q ·w

}〈
p +

w

2

∣∣∣ ρ̂

(2π~)f

∣∣∣p− w

2

〉
=

∫
dw
〈
p +

w

2

∣∣∣ ρ̂ ∣∣∣p− w

2

〉
δ(w)

= 〈p| ρ̂ |p〉

=
∑
i

Pi〈p|ψi〉〈ψi|p〉

=
∑
i

Pi|ψi(p)|2.

For the special case of a pure state, ρ̂ = |ψ〉 〈ψ|,∫
dqW (p,q) = |ψ(p)|2.

4. Wigner function is bounded.

Proof. For pure states, ρ̂ = |ψ〉 〈ψ| and

W (p,q) =

∫
du

(2π~)f
exp

{
− i

~
p · u

}
ψ
(
q +

u

2

)
ψ∗
(
q− u

2

)

The Cauchy-Schwartz inequality says

∣∣∣∣∫ b

a
dzf∗(z)g(z)

∣∣∣∣ ≤
√∫ b

a
dz |f(z)|2 dz

∫ b

a
|g(z)|2.



By setting a = −∞, b =∞, f = ψ (q− u/2) , g = (2π~)−fψ (q + u/2) e−ip·u/~ we obtain∫ ∞
−∞

du
∣∣∣ψ (q− u

2

)∣∣∣2 = 2f ,
1

(2π~)2f

∫ ∞
−∞

du
∣∣∣ψ (q +

u

2

)∣∣∣2 =
2f

(2π~)2f
.

Thus,

|W (p,q)| =
∣∣∣∣∫ du

(2π~)f
exp

{
− i

~
p · u

}
ψ
(
q +

u

2

)
ψ∗
(
q− u

2

)∣∣∣∣ ≤
√(

1

π~

)2f

.

Therefore,

|W (p,q)| ≤
(

2

h

)f
.

5. The overlap of two Wigner functions is proportional to the inner product of the
corresponding wave-functions.

Proof. ∫
dpdqWψ(p,q)Wφ(p,q)

=

∫
dudvdpdq

e−
i
~p·(u+v)

(2π~)2f

〈
q +

u

2

∣∣∣ ρ̂ψ ∣∣∣q− u

2

〉〈
q +

v

2

∣∣∣ ρ̂φ ∣∣∣q− v

2

〉
=

∫
dudq

(2π~)f

〈
q +

u

2

∣∣∣ ρ̂ψ ∣∣∣q− u

2

〉〈
q− u

2

∣∣∣ ρ̂φ ∣∣∣q +
u

2

〉
=

∫
dudq

(2π~)f

[
ψ
(
q +

u

2

)
φ∗
(
q +

u

2

)] [
φ
(
q− u

2

)
ψ∗
(
q− u

2

)]
.

Setting Q1 = q + u/2 and Q2 = q− u/2, then dqdu = |J |dQ1dQ2 = dQ1dQ2 and∫
dpdqWψ(p,q)Wφ(p,q) =

1

hf

∫
dQ1 [ψ (Q1)φ∗ (Q1)]

×
∫

dQ2 [φ (Q2)ψ∗ (Q2)]

=
1

hf
|〈ψ|φ〉|2 .

6. Overlap for orthogonal wave-functions

If 〈ψ|φ〉 = 0 =⇒
∫

dpdqWψ(p,q)Wφ(p,q) = 0.

Proof. It is a direct consequence of property 5.

7. Overlap of the Wigner function with itself

Since 〈ψ|ψ〉 = 1 =⇒
∫

dpdqW 2(p,q) =
1

hf

Proof. It is a direct consequence of property 5.



8. Translational behavior of the Wigner function.

? If ψ(q)→ ψ(q− b) then W(p,q)→W(p,q− b).

Proof. Let’s consider a density operator ρ̂ =
∑

i Pi |ψi〉 〈ψi|, such that

W (p,q) =

∫
due−

i
~p·u

〈
q +

u

2

∣∣∣ ρ̂

(2π~)f

∣∣∣q− u

2

〉
=
∑
i

Pi

∫
du

(2π~)f
e−

i
~p·uψi

(
q +

u

2

)
ψ∗i

(
q− u

2

)
.

Under the shift ψi(q)→ ψi(q− b), we obtain

W (p,q)→
∑
i

Pi

∫
du

(2π~)f
e−

i
~p·uψi

(
q− b +

u

2

)
ψ∗i

(
q− b− u

2

)
=

∫
due−

i
~p·u

〈
(q− b) +

u

2

∣∣∣ ρ̂

(2π~)f

∣∣∣(q− b)− u

2

〉
=W (p,q− b).

? If ψ(q)→ ψ(q) exp
(
i
~q · p′

)
=⇒ W (p,q)→W (p− p′,q).

Proof. Let’s consider a density operator ρ̂ =
∑

i Pi |ψi〉 〈ψi|, such that

W (p,q) =
∑
i

Pi

∫
du

(2π~)f
e−

i
~p·uψi

(
q +

u

2

)
ψ∗i

(
q− u

2

)
.

Under the shift ψ(q)→ ψ(q) exp
(
i
~q · p′

)
, we obtain

W (p,q)→
∑
i

Pi

∫
du

(2π~)f
e−

i
~ (p−p′)·uψi

(
q +

u

2

)
ψ∗i

(
q− u

2

)
=

∫
due−

i
~ (p−p′)·u

〈
q +

u

2

∣∣∣ ρ̂

(2π~)f

∣∣∣q− u

2

〉
=W (p− p′,q).

9. Invariance of the Wigner function under time and space reflection

? If ψ(q)→ ψ(−q) then W(p,q)→W(−p,−q).

Proof.

W (p,q)→
∑
i

Pi

∫
du

(2π~)f
e−

i
~p·uψi

(
−q− u

2

)
ψ∗i

(
−q +

u

2

)
=
∑
i

Pi

∫
dQ

(2π~)f
e

i
~p·Qψi

(
−q +

Q

2

)
ψ∗i

(
−q− Q

2

)
=
∑
i

Pi

∫
dQ

(2π~)f
e−

i
~ (−p)·Qψi

(
−q +

Q

2

)
ψ∗i

(
−q− Q

2

)
=

∫
dQe−

i
~ (−p)·Q

〈
(−q) +

Q

2

∣∣∣∣ ρ̂

(2π~)f

∣∣∣∣(−q)− Q

2

〉
=W (−p,−q).



? If ψ(q)→ [ψ(q)]∗ =⇒ W (p,q)→W (−p,q).

Proof.

W (p,q)→
∑
i

Pi

∫
du

(2π~)f
e−

i
~p·uψ∗i

(
q +

u

2

)
ψi

(
q− u

2

)
=
∑
i

Pi

∫
dQ

(2π~)f
e

i
~p·Qψi

(
q +

Q

2

)
ψ∗i

(
q− Q

2

)
=
∑
i

Pi

∫
dQ

(2π~)f
e−

i
~ (−p)·Qψi

(
q +

Q

2

)
ψ∗i

(
q− Q

2

)
=

∫
dQe−

i
~ (−p)·Q

〈
q +

Q

2

∣∣∣∣ ρ̂

(2π~)f

∣∣∣∣q− Q

2

〉
=W (−p,q).

10. Expectation values.

? 〈f(q̂)〉 =
∫

dpdqf(q)W (p,q).

Proof. The expectation value in standard Quantum mechanics is given by 〈f(q̂)〉 =

〈ψ| f(q̂) |ψ〉. On the other hand, in phase space quantum mechanics,∫
dpdqf(q)W (p,q) =

∫
dudqf(q)

〈
q +

u

2

∣∣∣ ρ̂ ∣∣∣q− u

2

〉
δ(u)

=

∫
dqf(q) 〈q| ρ̂ |q〉

=

∫
dqψ(q)f(q)ψ∗(q)

=〈f(q̂)〉.

? 〈g(p̂)〉 =
∫

dpdqg(p)W (p,q)

Proof. Following the same lines as above,∫
dpdqg(p)W (p,q) =

∫
dpdwg(p)

〈
p +

w

2

∣∣∣ ρ̂ ∣∣∣p− w

2

〉
δ(w)

=

∫
dpg(p) 〈p| ρ̂ |p〉

=

∫
dpψ(p)g(p)ψ∗(p)

=〈g(p̂)〉.

? 〈Ĥ(p̂, q̂)〉 =
∫

dpdqH(p,q)W(p,q)

Proof. It is a direct consequence of the linearity of the integral and the expectations
proved previously.

11. Linearity of mixed states in phase space.



Proof. Let us consider a mixed quantum state ρ̂ =
∑

i Piρ̂i =
∑

i Pi |ψi〉 〈ψi|, then

W (p,q) =

∫
du exp

{
− i

~
p · u

}〈
q +

u

2

∣∣∣ ρ̂

(2π~)f

∣∣∣q− u

2

〉
=
∑
i

Pi

∫
du exp

{
− i

~
p · u

}〈
q +

u

2

∣∣∣ ρ̂i
(2π~)f

∣∣∣q− u

2

〉
=
∑
i

PiWi(p,q).

12. Wave function from the Wigner distribution

ψ (q) =
1

ψ∗ (0)

∫
dp exp

{
i

~
p · q

}
W
(
p,

q

2

)
.

Proof. For a pure state, ρ̂ = |ψ〉 〈ψ|, then

W
(
p,

q

2

)
=

1

(2π~)f

∫ ∞
−∞

du exp

{
− i

~
p · u

}
ψ
(q

2
+

u

2

)
ψ∗
(q

2
− u

2

)

Multiplying both sides by eip·q/~ and taking the integral over the p variables we obtain∫
dp exp

{
i

~
p · q

}
W
(
p,

q

2

)
=

∫ ∞
−∞

duψ
(q

2
+

u

2

)
ψ∗
(q

2
− u

2

)
δ(u− q)

=ψ (q)ψ∗ (0) .

E.3 Properties of the Wigner propagator

The properties of the Wigner propagator depends upon the properties of the Weyl symbol of
the unitary evolution operator. This weyl symbol is usually called Weyl propagator. Let us check
a couple of simple properties of this object.

1. UW(r, 0) = 1.

Proof. At initial time t = 0, Û = 1̂ and

UW(r, 0) =

∫
due−

i
~p·u

〈
q +

u

2

∣∣∣ Û(0)
∣∣∣q− u

2

〉
=

∫
due−

i
~p·uδ(u) = 1.

2. U∗W(r, t) = UW(r,−t) = U−1
W (r, t).



Proof. We know that Û † = Û−1, then,

U∗W(r, t) =

∫
due

i
~p·u

〈
q− u

2

∣∣∣ Û †(t) ∣∣∣q +
u

2

〉
=

∫
due

i
~p·u

〈
q− u

2

∣∣∣ Û−1(t)
∣∣∣q +

u

2

〉
=

∫
dve−

i
~p·v

〈
q +

v

2

∣∣∣ Û−1(t)
∣∣∣q− v

2

〉
=U−1

W (r, t).

On the other hand

UW(r,−t) =

∫
dve−

i
~p·v

〈
q +

v

2

∣∣∣ Û(−t)
∣∣∣q− v

2

〉
=

∫
dve−

i
~p·v

〈
q +

v

2

∣∣∣ Û−1(t)
∣∣∣q− v

2

〉
.

Therefore,
U∗W(r, t) = UW(r,−t) = U−1

W (r, t).

3. GW(r′′, 0; r′, 0) = δ(r′′ − r′).

Proof. By considering the definition of Wigner propagator,

GW(r′′, t; r′, 0) =
1

(2π~)2

∫
dr̃e

i
~ (r′−r′′)∧r̃UW

(
r̃′ + r̃′′

2
+

r̃

2
, t

)
× U∗W

(
r̃′ + r̃′′

2
− r̃

2
, t

)
,

and the fact that at initial time t = 0, UW(r, 0) = 1, then

GW(r′′, t; r′, 0) =
1

(2π~)2

∫
dr̃ exp

[
i

~
(r′ − r′′) ∧ r̃

]
= δ(r′ − r′′).

4. Wigner propagator is real

Proof. Since Wigner function is real, then

W (r′′, t) =

[∫
dr′GW(r′′, t; r′, 0)W (r′, 0)

]∗
=

∫
dr′G∗W(r′′, t; r′, 0)W (r′, 0)

=

∫
dr′GW(r′′, t; r′, 0)W (r′, 0),

therefore,
G∗W(r′′, t; r′, 0) = GW(r′′, t; r′, 0).

5. GW(r′′, t; r′, 0) = GW(r′, 0; r′′, t) = GW(r′,−t; r′′, 0).



Proof. Straightforward by application of property 2 in the Wigner propagator representa-
tion

GW(r′′, t; r′, 0) =
1

(2π~)2

∫
dr̃e

i
~ (r′−r′′)∧r̃UW

(
r̃′ + r̃′′

2
+

r̃

2
, t

)
U∗W

(
r̃′ + r̃′′

2
− r̃

2
, t

)
.





Appendix F

Phase transformation of the unitary Wigner propaga-

tor

By considering Eq. (2.54), we see that the phase of the propagator in Eq. (2.53) is a mul-
tivariate polynomial in α0, β0. This polynomial has mixed terms that prevent the direct
integration into Airy functions. Hence, it is necessary to transform this phase into a new
one suitable for the integration of the propagator. At this point one may wonder about
the structure of such kind of transformations. The answer comes from the mathematical
structure of the Airy function: As long as we seek for linear transformations we are able to
maintain the cubic + linear term as we will see in the following.

To begin with, let us consider the polynomial

P0(α0, β0) = aα3
0 + bα2

0β0 + cα0β
2
0 + dβ3

0 − α0Q+ β0P, (F.1)

with coefficients a, b, c, d defined in Eq. (G.1) of Appendix G. From this polynomial we would
like to go to a phase without mixed terms. To accomplish this objective, we propose the
first linear transformation over this polynomial

α0 = µ1, β0 = ν1 − λ1µ1, (F.2)

with the Jacobian satisfying |J1| = 1, whereas the dimensionless parameter λ1 will enable
us to remove terms from P . By applying this transformation to P we obtain

P1(µ1, ν1) =− (Q+ λ1P )µ1 + Pν1 + (a− λ1b+ cλ2
1 − dλ3

1)µ3
1 (F.3)

+ (b− 2λ1c+ 3dλ2
1)ν1µ

2
1 + (c− 3dλ1)µ1ν

2
1 + dν3

1 .

With the purpose of removing from this phase the quadratic term in ν1, we must impose
the condition

λ1 =
c

3d
. (F.4)

Then, leaving λ1 implicitly to get a simpler expression, the polynomial takes the form

P1(µ1, ν1) = −(Q+λ1P )µ+(b−2λ1c+3λ2
1d)νµ2 +(a−λ1b+λ

2
1c−λ3

1d)µ3 +Pν+dν3. (F.5)
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From this expression we define the following relations among the coefficients

a1 = a− λ1b+ λ2
1c− λ3

1d, b1 = b− 2λ1c+ 3λ2
1d, d1 = d. (F.6)

Therefore,
P1(µ1, ν1) = −(Q+ λ1P )µ1 + Pν1 + a1µ

3
1 + b1ν1µ

2
1 + d1ν

3
1 . (F.7)

Following the same steps as above, we introduce a new transformation as

µ1 = µ2, ν1 = (ν2 − λ2µ2), (F.8)

with |J2| = 1. Thus, the polynomial takes the new form

P2(µ2, ν2) =− (Q+ λ1P + λ2P + 3d1λ2ν
2
2)µ2 + (b1 + 3λ2

2d1)ν2µ
2
2 (F.9)

+ (a1 − λ2b1 − λ3
2d1)µ3

2 + Pν2 + d1ν
3
2 .

In order to eliminate the factor of µ3
2 we solve for its coefficient. Once we do that, we obtain

three solutions for the parameter λ2. As long as the polynomial shall be real, we keep only
the real solution given by

λ2 =
1

62/3

(
−9a1d

2
1 +

√
3d3

1(4b31 + 27a2
1d1)

)1/3

(F.10)

×

[
−21/3

d1
+ 2(3)1/3b1

(
−9a1d

2
1 +

√
3d3

1(4b31 + 27a2
1d1)

)−2/3
]
.

By means of the new set of coefficients

b2 = b1 + 3λ2
2d1, c2 = −3d1λ2, d2 = d1. (F.11)

the polynomial takes the new form

P2(µ2, ν2) = −(Q+ λ1P + λ2P )µ2 + c2ν
2
2µ2 + b2ν2µ

2
2 + Pν2 + d2ν

3
2 . (F.12)

Let us introduce here the third transformation defined by

ν2 = ν3, µ2 = (µ3 − λ3ν3), (F.13)

with |J3| = 1. Then

P3(µ3, ν3) = (−Q− P (λ1 + λ2 − 1))µ3 + (c2µ3 − 2λ3b2µ3)ν2
3 (F.14)

+ (d2 − λ3c2 + λ2
3b2)ν3

3 + b2µ
2
3ν3.

If we want to remove the quadratic term ν2
3 , the parameter λ3 must be

λ3 =
c2

2b2
, (F.15)



Therefore, by defining the new set of coefficients

b3 = b2, d3 = d2 −
c2

2

4b2
, (F.16)

we find that

P3(µ3, ν3) =− (Q+ P (λ1 + λ2))µ3 + d3ν
3
3 + b3µ

2
3ν3 (F.17)

+ (P [1 + λ1λ3 + λ2λ3] + λ3Q) ν3

Finally, we propose the last transformation as

µ3 =
ν4 − µ4

2λ4
, ν3 =

ν4 + µ4

2
, (F.18)

with J4 = (−2λ4)−1. Then,

P4(µ4, ν4) =

(
d3

8
+

b3
8λ2

4

)
µ3

4 +

(
3d3

8
− b3

8λ2
4

)
µ2

4ν4 (F.19)

+

(
P

2

[
1 + λ1λ3 + λ2λ3 +

λ1

λ4
+
λ2

λ4

]
+
Q

2

[
λ3 +

1

λ4

])
µ4

+

(
d3

8
+

b3
8λ2

4

)
ν3

4 +

(
3d3

8
− b3

8λ2
4

)
ν2

4µ4

+

(
P

2

[
1 + λ1λ3 + λ2λ3 −

λ1

λ4
− λ2

λ4

]
+
Q

2

[
λ3 −

1

λ4

])
ν4.

In order to eliminate the quadratic contribution in both variables, we have to impose the
condition

λ4 =

√
b3

3d3
. (F.20)

Then

P4(µ4, ν4) =
d3

2
µ3

4 +

(
P

2

[
1 + λ1λ3 + λ2λ3 +

λ1

λ4
+
λ2

λ4

]
+
Q

2

[
λ3 +

1

λ4

])
µ4 (F.21)

+
d3

2
ν3

4 +

(
P

2

[
1 + λ1λ3 + λ2λ3 −

λ1

λ4
− λ2

λ4

]
+
Q

2

[
λ3 −

1

λ4

])
ν4. (F.22)

From this result, it is clear that the polynomial P4 is now a function of the linear and cubic
variables only. With the purpose of writing this result in a more compact way, we introduce
the last set of definitions as

ρ =
d3

2
, χ =

P

2
[1 + λ1λ3 + λ2λ3] +

Q

2
λ3, ξ =

P

2

[
λ1

λ4
+
λ2

λ4

]
+

Q

2λ4
. (F.23)

Hence, the final form of the polynomial is

P4(µ4, ν4) = ρµ3
4 + (χ+ ξ)µ4 + ρν3

4 + (χ− ξ) ν4. (F.24)

In the same way, under the whole set of transformations, the total Jacobian change the



measures as
dα0dβ0 = |J1J2J3J4| dµ4dν4 = (2λ4)−1dµ4dν4. (F.25)

By using this into Eq. (2.53) we obtain

G(r̆′′, t; r̆′, 0) =

∫
dα0dβ0

(2π)2
exp

(
i
[
aα3

0 + bα2
0β0 + cα0β

2
0 + dβ3

0 − α0Q+ β0P
])

(F.26)

=
1

2λ4(2π)2

∫
dµ4dν4 exp

(
i
[
ρµ3

4 + (χ+ ξ)µ4 + ρν3
4 + (χ− ξ) ν4

])
=

1

2λ4

∫ ∞
−∞

dµ4

2π
exp

(
i
[
ρµ3

4 + (χ+ ξ)µ4

]) ∫ ∞
−∞

dν4

2π
exp

(
i
[
ρν3

4 + (χ− ξ) ν4

])
=

1

2λ4

∫ ∞
0

dµ4

π
cos
(
ρµ3

4 + (χ+ ξ)µ4

) ∫ ∞
0

dν4

π
cos
(
ρν3

4 + (χ− ξ) ν4

)
.

Thus, by means of the following integration∫ ∞
0

dz

π
cos
(
rz3 + sz

)
=(3r)−1/3

∫ ∞
0

dz′

π
cos

(
[z′]3

3
+ s(3r)−1/3z′

)
(F.27)

=
1

3
√

3r
Ai
(

s
3
√

3r

)
,

we obtain the final propagator in Eq. (2.56).



Appendix G

Phase coefficients for the Fourier-space version of the

propagator

G.1 First set of coefficients

When writing explicitly the Wigner propagator in Eq. (2.52) we have made an overall sim-
plification in notation by means of the following auxiliary equations. They are completely
independent of the system dynamics.

a =
1

3

∫ t

0
dsσ(t′) sin3(θ), (G.1)

b =

∫ t

0
dsσ(t′) sin2(θ) cos(θ),

c =

∫ t

0
dsσ(t′) sin(θ) cos2(θ),

d =
1

3

∫ t

0
dsσ(t′) cos3(θ),

G.2 Second set of coefficients

When writing explicitly the Wigner propagator in Eq. (4.55) we have made an overall sim-
plification in notation by means of the following auxiliary equations. Most of them depends
upon the system dynamics, expressed in terms of its trajectory qn and its quantum fluctu-
ations q̃n. This, in turn, implies that it is not possible to know them explicitly unless we
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have solved completely the dynamics of this DOF.

I1(t) =
1

~

∫ t

0
dsΘj(s)˘̃qj(s)q̆j(s), (G.2)

I2(t) =
1

~

∫ t

0
ds

∫ s

0
duΘj(s)Θj(u) sin [θj(s)− θj(u)] ˘̃qj(u)q̆j(s),

I3(s) =

∫ s

0
duΘj(u) sin [θj(s)− θj(u)] ˘̃qj(u),

a1j(t) =

∫ t

0
dsΘj(s) sin[θj(s)]q̆j(s),

a2j(t) =

∫ t

0
dsΘj(s) cos[θj(s)]q̆j(s),

a3j(t) =
1

3

∫ t

0
dsσj(s) sin3[θj(s)]),

a4j(t) =

∫ t

0
dsσj(s) sin2[θj(s)] cos[θj(s)],

a5j(t) =

∫ t

0
dsσj(s) sin[θj(s)] cos2[θj(s)],

a6j(t) =
1

3

∫ t

0
dsσj(s) cos3[θj(s)],

a7j(t) =
1

~

∫ t

0
dsσj(s) sin2(θj)I3(s),

a8j(t) =
1

~

∫ t

0
dsσj(s) cos2(θj)I3(s),

a9j(t) =
2

~

∫ t

0
dsσj(s) sin(θj) cos(θj)I3(s),

a10j(t) =
1

~2

∫ t

0
dsσj(s) sin[θj(s)]I

2
3 (s),

a11j(t) =
1

~2

∫ t

0
dsσj(s) cos[θj(s)]I

2
3 (s),

a12j(t) =
1

3~3

∫ t

0
dsσj(s)I

3
3 (s),

a13j(t) =
1

~

∫ t

0
dsσj(s) sin2[θj(s)]˘̃qj(s),

a14j(t) =
1

~

∫ t

0
dsσj(s) cos2[θj(s)]˘̃qj(s),

a15j(t) =
2

~

∫ t

0
dsσj(s) sin[θj(s)] cos[θj(s)]˘̃qj(s),

a16j(t) =
2

~2

∫ t

0
dsσj(s) sin[θj(s)]I3(s)˘̃qj(s),

a17j(t) =
2

~2

∫ t

0
dsσj(s) cos[θj(s)]I3(s)˘̃qj(s),

a18j(t) =
1

3~3

∫ t

0
dsσj(s)I

2
3 (s)˘̃qj(s),



a19j(t) =
1

~2

∫ t

0
dsσj(s) sin[θj(s)]˘̃q

2
j (s), (G.3)

a20j(t) =
1

~2

∫ t

0
dsσj(s) cos[θj(s)]˘̃q

2
j (s),

a21j(t) =
1

~3

∫ t

0
dsσj(s)I3(s)˘̃q2

j (s),

a22j(t) =
1

~3

∫ t

0
dsσj(s)˘̃q

3
j (s)

G.3 Third set of coefficients

Aj(t) = a3j(t) Bj(t) = a6j(t), Cj(t) = a4j(t), Dj(t) = a5j(t), (G.4)

Ej(t) = a13j(t)− a7j(t) Fj(t) = a14j(t)− a8j(t), Gj(t) = a15j(t)− a9j(t), (G.5)

Hj(t) = −Qj − a1j(t) + a10j(t)− a16j(t) + a19j(t), (G.6)

Jj(t) = Pj − a2j(t) + a11j(t)− a17j(t) + a20j(t). (G.7)
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