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Abstract

Background

Helicobacter pylori has been linked to several diseases such as chronic urticaria, gastritis,

and type 1 gastric neuroendocrine tumors (type 1 gNET). Although these diseases seem to

have different mechanisms, their relationship with H. pylori suggests a common inflamma-

tory pathway.

Objective

To identify potential cross-reactive antigens between H. pylori and humans involved in

chronic urticaria and type 1 gNET.

Methods

Alignment was carried out among human proteins associated with urticaria (9 proteins),

type 1 gNET (32 proteins), and H. pylori proteome. We performed pairwise alignment

among the human and H. pylori antigens with PSI-BLAST. Modeling based on homology

was done with the Swiss model server and epitope prediction with the Ellipro server. Epi-

topes were located on a 3D model using PYMOL software.

Results

The highest conserved sequence was found between the human HSP 60 antigen and the

H. pylori chaperonin GroEL with an identity of 54% and a cover of 92%, followed by the

alpha and gamma enolases and two H. pylori phosphopyruvate hydratase, both with an

identity and cover of 48% and 96%, respectively. The H/K ATPase (Chain A) showed high

identity with two H. pylori proteins (35.21% with both P-type ATPase), but with low cover
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(only 6%). We observed eight linear and three discontinuous epitopes for human HSP 60

and three lineal and one discontinuous epitope for both alpha-enolase and gamma enolase,

high conserved with H. pylori sequences.

Conclusion

Some type 1 gNET antigens shared potential cross-reactive epitopes with H. pylori proteins,

suggesting that molecular mimicry could be a mechanism that explains the relationship

between the infection and this disease. Studies evaluating the functional impact of this rela-

tionship are needed.

Introduction

Helicobacter pylori (H. pylori) is a bacteria that colonize gastric mucosa in humans and

increase the risk of serious diseases such as gastrointestinal ulcers and some cancers [1]. Most

of the case, H. pylori cause a minimal damage to the gastric system and the immune response

es effective in the bacterial elimination. However, in individual with a genetic predisposition,

these bacteria have the ability to form subpopulations capable of immunomodulating the

immune response and favoring a more severe inflammatory process, favoring effective harvest

of nutrients to feed the bacteria and suppressing the immune response, allowing it to persist in

the gastric system [2, 3]. The role of H. pylori infection in the pathogenesis of several extra-gas-

tric diseases has been also suggested [4, 5].

Different mechanisms explain the pathogenicity of H. pylori and the initiation of the

inflammatory process with the release of cytokines and chemokines [6]. These molecules facili-

tate the alteration of endothelial morphology and the passage of different proteins of the

microorganism to the general circulation. Therefore, the role of H. pylori in different systemic

diseases has been studied, and different mechanisms proposed; the systematic inflammatory

could induce an autoimmune response generated by molecular mimicry between the proteins

of H. pylori and humans [4, 7]. Molecular mimicry allows different microorganisms to evade

the human immune system due to the similarity of some human proteins and microorganisms.

However, when lymphocytes recognize these antigens, autoantibodies and/or autoreactive T

lymphocytes can be generated.

Pathological processes that lead to Autoimmune Gastritis (AG) and type 1 gastric Neuroen-

docrine Tumors (type 1 gNETs) are not understood but some evidence suggests at both are

autoimmune diseases in which the gastric mucosa is damaged and the production of autoanti-

bodies against the exposed intracytoplasmic proteins are spread. Autoimmune atrophic gastri-

tis is frequently found in association with Hashimoto’s thyroiditis, Graves disease, type 1

diabetes mellitus, Addison’s disease, and chronic urticaria [8]. Infection by H. pylori is com-

mon in AG, with a prevalence of 33,3 to 57%, however, the contribution of H pylori to type 1

gNET oncogenesis has not been demonstrated [9–11]. In chronic urticaria, autoimmunity has

been strongly associated with its causality and severity [12, 13]. As in GA and gNETs, several

epidemiological studies show a possible relationship between H. pylori and urticaria [14, 15],

however, the reason for this association has not been explored.

The repertory of components common between H. pylori and the host has been increasing.

From the H. pylori proteome, it is possible to evaluate the identity of its proteins in humans.

Our hypothesis was the following: Considering that during chronic inflammatory processes

there is an increased expression of some hidden proteins, it is possible that autoantibodies are
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generated against these proteins. In this study, through in silico analysis, we evaluated this

hypothesis by comparing the identity of H. pylori proteins with some proteins identified in

urticaria inflammation and in type 1 gNET, two extra-gastrointestinal systemic diseases with

growing evidence of their possible association with H. pylori.

Material and methods

Antigen analysis

After an exhaustive review of the literature, we selected proteins for in silico analysis involved

in urticaria, autoimmune thyroiditis, AG and type 1 gNET. A total of thirty-two amino acid

sequences of tumoral neuroendocrine and AG antigens and nine antigens related with urti-

caria, and thyroiditis were retrieved from Uniprot database (Table 1).

Amino acid sequences of each antigen was used as input in PSI-BLAST to find similar anti-

gens from H. pylori and alignment using two algorithms, BLOSUM62 through PRALINE pair-

wise from the center for integrative bioinformatics IBIVU (https://www.ibi.vu.nl/programs/

pralinewww/) and PAM250 using the EMBOSS Needle pairwise (https://www.ebi.ac.uk/Tools/

psa/emboss_needle/), based on the assumption of both short and long evolutionary distances,

respectively. For the progressive alignment strategy, gap penalty was used of 12 opens, 0.5 and

1 extension, with an iteration of 3. Search was limited to taxid 210, corresponding to the spe-

cific species H. pylori. Antigens with similarity lower than 30% were discard.

Modelling based on homology

The models were used to locate residues exposed and conserved on the surface to conforma-

tion of antigenic patches. Antigens with experimental structure resolved were retrieved from

Protein Data Bank. 3D structures from antigens not reported in Protein Data Bank were gen-

erated by modelling based on homology with Swiss Model server (https://swissmodel.expasy.

org/interactive) and were refined with Deep View for energy minimization. Its quality was

evaluated by several tools, including the Ramachandran graphs, WHATIF, QMEAN4 index

and energy values (GROMOS96 force field). All models were visualized with Pymol 2.3

[16, 17].

Epitope prediction

B cell epitope prediction was made with Ellipro server (http://tools.iedb.org/ellipro/). Predic-

tion parameters were set up as default. Also, antigenic patches reported were retrieved to

explore molecular mimicry between tumoral And H. pylori antigens. Only epitopes with a

score above of 0,7 and more than 4 residues were selected [16, 17].

Results

H. pylori antigens selection

From the thirty-two tumoral neuroendocrine and AG human antigen sequences retrieved,

eight share identities with ten H. pylori proteins: The Lewis antigens (3-galactosyl-N-acetylglu-

cosaminide 4-alpha-L-fucosyltransferase and Galactoside alpha-(1,2)-fucosyltransferase 2),

heat shock protein 60 (HSP 60), H/K ATPase, carbonic anhydrase, the heavy neurofilament

protein and the neuro-specific alpha and gamma enolases. The H/K ATPase was the only one

that present identity with more than one H. pylori protein (Table 2).

None of the nine proteins associated with urticaria and thyroiditis showed identity with the

H. pylori proteome.
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Table 1. Tumoral neuroendocrine antigens and proteins associated with urticaria used to compare with the H. pylori proteome.

Antigens Expression UniProt

Urticaria associated proteins

Eosinophil peroxidase Eosinophil P11678

Eosinophil cationic protein Eosinophil P12724

Thyroid peroxidase Thyroid gland* P07202

Thyroglobulin Thyroid gland P01266

Myeloperoxidase Polymorphonuclear leukocytes P05164

Lactoperoxidase mammary glands, salivary gland, bronchial submucosal glands P22079

Peroxidasin like protein Cardiac muscle* A1KZ92

IL-24 Adrenal gland* Q13007

High affinity immunoglobulin epsilon receptor subunit alpha Skin (187 others tissues) P12319

Type 1 pNETs proteins

Hsp60 Stomach, Endothelium, P10809

H/K ATPase (Chain A) Parietal cells P20648

H/K ATPase (Chain B) Parietal cells P51164

Carbonic anhydrase (9) Pancreas Q16790

E3 Ligase Pancreas Q8IWV7

HLADR B1*0405 Pancreas O19504

Galactoside 3(4) -L-fucosyltransferase (Lewis antigens) Stomach, Endothelium, Platelets, Neutrophils P21217

Galactoside 2-alpha-L-fucosyltransferase 2 (Lewis antigens) Stomach, Endothelium, Platelets, Neutrophils Q10981

Platelet glycoprotein Ib Alpha chain (GPI) Platelets P07359

Platelet glycoprotein Ib Beta chain (GPII) Platelets P13224

Synaptophysin Brain, anterior cingulate cortex (185 other tissues) P08247

Neurofilament light proteins dorsal root ganglion (216 other tissues) P07196

Neurofilament medium proteins dorsal root ganglion (178 other tissues) P07197

Neurofilament heavy proteins dorsal root ganglion (193 other tissues) P12036

Chromogranin (A) Pancreas P10645

Neuronespecific Gamma Enolase Cerebellum (209 other tissues) P09104

Neuronespecific Alpha Enolase Kidney (244 other tissues) P06733

Glycoprotein hormones alpha chain (hCG alpha) Placenta (111 others tissues) P01215

Choriogonadotropin subunit beta (hCG Beta) Placenta P0DN86

Pancreatic Polypeptide Pancreas P01298

Alpha-fetoprotein Embryo P02771

Serotonin receptor Cerebral cortex, amygdala, hippocampus, testis (95 other tissues) P46098

Gastrin Stomach P01350

Insulin Pancreas (beta) P01308

Glucagon Pancreas (Alpha) P01275

Somatostatin Pancreas (Delta), hypothalamus P61278

Vasoactive intestinal peptide Vermiform appendix (141 other tissues) P01282

Histamine 2 receptor Nerve cells, airway and vascular smooth muscles, endothelium, epithelium, leukocytes P25021

Histamine 3 receptor Nerve cells, airway and vascular smooth muscles, endothelium, epithelium, leukocytes Q9Y5N1

Histamine 4 receptor Nerve cells, airway and vascular smooth muscles, endothelium, epithelium, leukocytes Q9H3N8

Transient receptor potential ankyrin 1 Oocyte, liposarcoma cells, fibroblasts O75762

Calcitonin Dorsal root ganglion (128 other tissues) P01258

Galanin Adenohypophysis (118 other tissues) P22466

https://doi.org/10.1371/journal.pone.0281485.t001
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All the human proteins with significant identity, presented functional homology with the

H. pylori proteins and have enzymatic functions: two fucosyltransferases, three ATPases, one

carbonic anhydrase and two phosphopyruvate hydratase. There were not a high different in

the identities between the BLOSUM62 and PAM250 algorithms. The highest conserved

sequence was found in the HSP 60 antigen, with an identity of 54% and a cover of 92%, fol-

lowed by the alpha and gamma enolases, both had an identity level of 48% and cover of 96%.

The H/K ATPase showed high identity with two H. pylori proteins (35,21% with both HAD IC

family P type ATPase and Cadmium-translocating P-type ATPase), but the cover were low

(only 6%). The lowest conserved sequence was present with the third H/K ATPase pairwise,

with an identity of 17% and cover of 11%.

Table 2. Pairwise alignment results from human proteins and H. pylori proteins using Blosum 62 and PM250 algorithms.

Human Protein H. pylori Protein (NCBI ID) Identity BLOSUM 62

(%)

Identity PM250

(%)

Cover

(%)

Lewis antigens

Galactoside alpha-(1,2)-fucosyltransferase 2 Alpha-1,2-fucosyltransferase (WP_128060420.1) 25% 24,54% 69%

3-galactosyl-N-acetylglucosaminide 4-alpha-L-

fucosyltransferase

fucosyltransferase (WP_100980580.1) 21% 25% 22%

HSP60 chaperonin GroEL (WP_140474878.1) 54% 53,76% 92%

H/K ATPase

H/K ATPase (Chain A) Copper-translocating P-type ATPase CopA

(WP_127984181.1)

17% 22,97% 11%

HAD-IC family P-type ATPase, partial

(WP_164532520.1)

35,21% 28% 6%

cadmium-translocating P-type ATPase

(WP_096470154.1)

35,21% 30% 6%

H/K ATPase (Chain B) No significant similarity found

Carbonic anhydrase Carbonic anhydrase (WP_139531711.1) 27% 26,89% 48%

E3 ligase No significant similarity found.

HLADR B1*0405 No significant similarity found.

GP I/II No significant similarity found.

Synaptophysin No significant similarity found.

Neurofilament proteins

Light No significant similarity found.

Medium No significant similarity found.

Heavy Hypothetical protein (WP_000782088.1) 19% 25% 16%

Chromogranin (A) No significant similarity found.

Neuronespecific Alpha Enolase phosphopyruvate hydratase (WP_120924717.1) 48% 47,38% 96%

Neuronespecific Gamma Enolase. phosphopyruvate hydratase (WP_025275561.1) 48% 48,81% 96%

HCG

Alpha No significant similarity found.

Beta No significant similarity found.

Pancreatic Polypeptide No significant similarity found.

Alpha-fetoprotein No significant similarity found.

Serotonin No significant similarity found.

Gastrin. No significant similarity found.

Somatostatin No significant similarity found.

Vasoactive intestinal peptide No significant similarity found.

The cover and identity values were taken to establish the degree of relationship between the proteins. The results are expressed as a percentage.

https://doi.org/10.1371/journal.pone.0281485.t002
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Modelling and epitope prediction

From the eight tumoral neuroendocrine human antigens, five did not present a 3D experimen-

tal structure: HSP60, H/K ATPase (Chain A), heavy neurofilament protein, and the two Lewis

antigen (FUT2 and FUT3) and were modelling based on homology with the Swiss Model

server. The templated used were 60 kDa heat shock protein mitochondrial homology (100%)

for HSP60, Potassium-transporting ATPase alpha chain 1 (96,71%) for H/K ATPase, Keratin

type I cytoskeletal 10 (37,5%) for the heavy neurofilament protein and Alpha-(1,6)-fucosyl-

transferase (17,27%) and Alpha1,3-fucosyltransferase (21,95%) for the two Lewis antigens,

FUT 2 and FUT 3, respectively. Models showed typical fold expected for their protein family.

For those whose did not fit in range of 0–1 was refined in Deep view software.

By using Ellipro server, the lineal and discontinuous epitopes on the tumoral neuroendo-

crine protein were predicted. By the selection criteria, the server threw four lineal and four dis-

continuous for FUT 2, three both lineal and discontinuous epitopes for FUT 3, eight lineal and

three discontinuous epitopes for HSP 60, three lineal epitopes for carbonic anhydrase and

non-valid discontinuous epitopes, three lineal and one discontinuous epitopes for alpha eno-

lase and gamma enolase, nine lineal and three discontinuous epitopes for H/K ATPase and

none lineal but three discontinuous epitopes for the heavy neurofilament protein. For each of

these proteins, some epitopes presented a possible antigenic patch among the alignment, in

sequence with a high homology as of see in Table 3.

In the case of HSP60, the second epitope (LE2: 276–299) was in the most conserved region

compared to the other three epitopes. For the alpha enolase, the first epitope described (LE1:

49–106) was the largest one of the three antigenic patches, with a total of 57 residues and 26

(45,6%) of them being identical with the H. pylori protein. By last, gamma enolase presents

one conservated epitope of 59 (LE2: 47–105), with an identity of 45,76% with the H. pylori pro-

tein (Fig 1). The 3D models of the human HSP60, alpha enolase and gamma enolase shown a

similar arrangement with H. pylori proteins chaperonin GroEL and the two phosphopyruvate,

respectively. The furthest RMSD was observed between HSP60 and chaperonin GroEL, with a

value of 5.391, however, PDB validation of HSP60 are low and may have a low molecular spa-

tial distribution. The overlay of the 3D models between the three human antigens and the H.

pylori whit the highest identity values are shown in the Fig 2.

Discussion

Despite the multiple epidemiological studies that associate infection with H. pylori and various

systemic diseases, it is not clear if this association is involved in the pathogenesis of these dis-

eases [6, 18–22]. One of the most discussed mechanisms is the induction of autoimmunity by

H. pylori through molecular mimicry [23, 24], but few human antigenic proteins have been

associated with this mechanism and they vary depending on the type of disease [1, 4, 25]. Also,

studies are lacking to show that these autoantibodies are functional.

In urticaria, different proteins have been described that can be recognized by IgG, IgM or

IgE autoantibodies [12, 26, 27], some of these autoantibodies can induce the activation of baso-

phils and mast cells, indicating that they can induce an inflammatory response [12, 28]. Some

studies suggest that the frequency of H. pylori infection is higher in patients with urticaria [29];

case series have been published where elimination of H. pylori has been associated with remis-

sion of the disease [15]. Although these results are still controversial [30, 31] suggest that the

presence of H. pylori may contribute to the development of urticaria. When we analyzed the

nine human antigen proteins that have been recognized by autoantibodies with functional

activity, none shared identity with the H. pylori proteins analyzed in this study. Although our

results suggest that there is no relationship between H. pylori and urticaria through molecular
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mimicry, they also do not completely rule out this hypothesis; Schmetzer et al. [27], observed

that more than 200 human proteins could be recognized by IgE autoantibodies in patients

with urticaria, therefore H. pylori proteins could have molecular mimicry with other proteins

that we did not evaluate; nevertheless, not all those autoantibodies are functional, and the 9

proteins included in this study are those that have antibodies with functional studies. There

are also proposals for other mechanisms that could explain the relationship between H. pylori
and urticaria not dependent on molecular mimicry [32].

Table 3. Lineal and discontinuous epitopes from human HSP60, alpha enolase and gamma enolase, predicted by Ellipro server.

Epitope Start End Peptide Number of

residues

Score

HSP60

LE 1 538 552 LLTTAEVVVTEIPKE 15 0.853

LE 2 276 299 EDVDGEALSTLVLNRLKVGLQVVA 24 0.794

LE 3 127 143 GFEKISKGANPVEIRRG 17 0.756

LE 4 321 347 GGAVFGEEGLTLNLEDVQPHDLGKVGE 27 0.743

LE 5 446 466 RCIPALDSLTPANEDQKIGIE 21 0.739

LE 6 84 93 IDLKDKYKNI 10 0.728

DE 1 I:A27, I:K28, I:D29, I:V30, I:K31, I:F32, I:G33, I:A34, I:D35, I:A36, I:R37, I:A38, I:L39, I:M40, I:L41, I:Q42, I:I84, I:D85, I:

L86, I:D88, I:K89, I:Y90, I:K91, I:N92, I:I93, I:G127, I:F128, I:E129, I:K130, I:I131, I:S132, I:K133, I:G134, I:A135, I:N136,

I:P137, I:V138, I:E139, I:I140, I:R141, I:R142, I:G143, I:L146, I:D149, I:A150, I:A153, I:E154, I:K157, I:Q158, I:S159, I:

K160, I:P161, I:V162, I:T163, I:T164, I:P165, I:E166, I:E167, I:G435, I:C447, I:I448, I:P449, I:A450, I:L451, I:D452, I:S453,

I:L454, I:T455, I:P456, I:A457, I:N458, I:E459, I:D460, I:Q461, I:K462, I:I463, I:G464, I:I465, I:E466, I:K469, I:L538, I:

L539, I:T540, I:T541, I:A542, I:E543, I:V544, I:V545, I:V546, I:T547, I:E548, I:I549, I:P550, I:K551, I:E552

95 0.747

DE 2 I:G222, I:Y223, I:I224, I:S225, I:P226, I:Y227, I:F228, I:I229, I:N230, I:T231, I:S232, I:K233, I:G234, I:Q235, I:K236, I:

C237, I:E238, I:F239, I:Q240, I:D241, I:A242, I:Y243, I:L245, I:S247, I:E248, I:K249, I:K250, I:I251, I:S252, I:S253, I:I254,

I:Q255, I:S256, I:I257, I:V258, I:P259, I:A260, I:L261, I:E262, I:I263, I:A264, I:N265, I:A266, I:H267, I:R268, I:K269, I:

P270, I:L271, I:I273, I:E276, I:D277, I:V278, I:D279, I:G280, I:E281, I:A282, I:L283, I:S284, I:T285, I:L286, I:V287, I:L288,

I:N289, I:R290, I:L291, I:K292, I:V293, I:G294, I:L295, I:Q296, I:V297, I:V298, I:A299, I:G321, I:G322, I:A323, I:V324, I:

F325, I:G326, I:E327, I:E328, I:G329, I:L330, I:T331, I:L332, I:N333, I:L334, I:E335, I:D336, I:V337, I:Q338, I:P339, I:

H340, I:D341, I:L342, I:G343, I:K344, I:G346, I:E347, I:T351, I:K352, I:L358, I:K359, I:G360, I:K361, I:G362, I:D363, I:

K364, I:A365, I:Q366, I:K369

111 0.734

DE 3 I:E65, I:Q66, I:S67, I:W68, I:G69, I:S70, I:P71 7 0.731

Alpha enolase

LE 1 49 105 RDNDKTRYMGKGVSKAVEHINKTIAPALVSKKLNVTEQEKIDKLMIEMDGTENKSKF 57 0.729

LE 2 250 287 FFRSGKYDLDFKSPDDPSRYISPDQLADLYKSFIKDYP 38 0.726

LE 3 224 239 ELLKTAIGKAGYTDKV 16 0.706

DE 1 A:S1, A:I2, A:L3, A:K4, A:I5, A:H6, A:A7, A:R8, A:E9, A:F11, A:D12, A:G15, A:N16, A:D22, A:L23, A:F24, A:T25, A:S26,

A:K27, A:G28, A:L29, A:F30, A:L46, A:L48, A:R49, A:D50, A:N51, A:D52, A:K53, A:T54, A:R55, A:Y56, A:M57, A:G58,

A:K59, A:G60, A:V61, A:S62, A:K63, A:A64, A:V65, A:E66, A:H67, A:I68, A:N69, A:K70, A:T71, A:I72, A:A73, A:P74, A:

A75, A:L76, A:V77, A:S78, A:K79, A:K80, A:L81, A:N82, A:V83, A:T84, A:E85, A:E87, A:K88, A:I89, A:K91, A:L92, A:

I94, A:E95, A:M96, A:D97, A:G98, A:T99, A:E100, A:N101, A:K102, A:S103, A:K104, A:F105, A:A120, A:G121, A:A122,

A:V123, A:E124, A:K125, A:G126, A:V127, A:P128

87 0.722

Gamma enolase

LE 1 251 287 YRDGKYDLDFKSPTDPSRYITGDQLGALYQDFVRDYP 37 0.737

LE 2 47 105 ELRDGDKQRYLGKGVLKAVDHINSTIAPALISSGLSVVEQEKLDNLMLELDGTENKSKF 59 0.714

LE 3 224 239 ELVKEAIDKAGYTEKI 16 0.698

DE 1 A:S1, A:I2, A:E3, A:K4, A:I5, A:W6, A:A7, A:R8, A:E9, A:L11, A:D12, A:G15, A:N16, A:D22, A:L23, A:Y24, A:T25, A:

A26, A:K27, A:G28, A:L29, A:F30, A:L46, A:L48, A:R49, A:D50, A:G51, A:D52, A:K53, A:Q54, A:R55, A:Y56, A:L57, A:

G58, A:K59, A:G60, A:V61, A:L62, A:K63, A:A64, A:V65, A:D66, A:H67, A:I68, A:N69, A:S70, A:T71, A:I72, A:A73, A:

P74, A:A75, A:L76, A:I77, A:S78, A:S79, A:G80, A:L81, A:S82, A:V83, A:V84, A:E85, A:E87, A:K88, A:L89, A:N91, A:L92,

A:L94, A:E95, A:L96, A:D97, A:G98, A:T99, A:E100, A:N101, A:K102, A:S103, A:K104, A:F105, A:A120, A:G121, A:

A122, A:A123, A:E124, A:R125, A:E126, A:L127, A:P128, A:R131

88 0.722

LE: Lineal epitope. DE: discontinuous epitope.

https://doi.org/10.1371/journal.pone.0281485.t003
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In the case of type 1 gNET, there is also controversy about the role of H. pylori [33, 34] but

its association with other types of cancer, specially gastric cancer is strong [7, 22, 24]; Follow-

ing our hypothesis of a possible cross-reactivity between H. pylori proteins and human pro-

teins associated with type 1 gNET, we found that HSP60 from H. pylori and human share

identity and we identified possible antigenic patches.

HSP60 is a mitochondrial localized quality control protein responsible for maintaining

mitochondrial function. HSP60 is considered both a tumor suppressor and promoter in differ-

ent types of cancer; its role in the oncogenesis of type 1 gastric neuroendocrine tumor needs to

be explored. HSPs participate as immunomodulators in both innate and in both innate and

acquired immune responses [35, 36].

Enolase is a dimeric protein composed of three isoenzymes, alpha, beta, and gamma (α, β
and γ). This enzyme catalyzes the phosphoenolpyruvate and 2-phosphoglycerate, one of the

Fig 1. 3D structure of the human HSP60 (A), alpha enolase (B) and gamma enolase (C). Cartoon and surface models

are showed to represent the position of the epitope predicted in the human antigens. All the epitopes are indicated in

color on surface models: blue, red, green, yellow, cyan, magenta, orange. LE. Lineal epitope. DE: discontinuous

epitope.

https://doi.org/10.1371/journal.pone.0281485.g001

Fig 2. Overlay of the 3-D models between type 1 gNET antigens and H. pylori proteins. Samples: human HSP60

(gold) vs H. pylori chaperonin Groel (Magenta) are shown as the complete unit (A) and a subunit (B). (C) Human

Alpha enolase (orange) vs H. pylori phosphopyruvate (cyan). (D) Gamma enolase (gray) vs phosphopyruvate (yellow).

RMSD: Root-mean-square deviation are showed in Armstrong (Å).

https://doi.org/10.1371/journal.pone.0281485.g002
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last steps in glycolysis. Enolase, specially α enolase, have been widely used as markers of NETs

through immunostaining. Glycolysis is a fundamental metabolic pathway, and its enzymes are

highly conserved and present in procaryotic and eukaryotic species, including pathogens, like

Streptococcus aureus, Streptococcus pneumoniae, Candida albicans, and Leishmania mexicana,

make it an excellent candidate to produce cross-reactive autoantibodies.

These results show the utility of in silico assays for clinical research; without putting patients

at risk, in silico analysis allows us to explore research hypotheses and prioritize resources in

those that are most promising. At the same time, it allows the integration of multiple disci-

plines, which generates a more holistic vision in the approach and study of patients. According

to these results, subsequent investigations of the role of H. pylori in urticaria require a different

hypothesis, while in the case of NETs the results suggest that some autoantigens could explain

the relationship between H. pylori in a subgroup of patients.

HSP60 and enolase have previously been identified in other gastrointestinal disorders like

autoimmune colitis and Chron’s disease [37, 38]. Therefore, our results support those autoan-

tibodies against the human homonymous protein may have some role in this disease, but it is

necessary to carry out functional studies to evaluate whether these antigens, when recognized

by the immune system, generate an inflammatory response. It is also necessary to note that

our study has some weaknesses that could explain the lack of cross-reactivity between the urti-

caria auto-antigens, and the H. pylori antigens evaluated; Due to the lack of knowledge about

the various proteins involved in urticaria and gNET, some important molecules could not be

included, and this could explain the lack of association between the pathogen and urticaria. In

addition, it is necessary to explore other mechanisms such as epitope spreding, which may also

be associated with this relationship between urticaria, type 1 gNET and H. pylori.
However, these autoantibodies can be useful as biomarkers with clinical utility. Molecular

mimicry usually occurs by evolutionary conservation of proteins between different species;

with the results of our study, we identified for the first-time shared epitopes between H. pylori
proteins and human proteins related to the pathogenesis of type 1 gNET. This finding may

have biological implications such as the potential formation of an autoimmune response medi-

ated by antibodies secondary to the recognition of H. pylori proteins. Previous analyses, com-

paring in silico techniques versus functional techniques [39, 40], show that in silico analyzes

allow to detected proteins that share identity with a 90% of precision, therefore they are quite

useful for the development of new research hypotheses and they are cost/effective since they

allow a better administration of research resources, especially those where there is little infor-

mation with functional studies, as is the case of our study where we explored the relationship

between H. pylori, urticaria and type 1 gNET; our results provide a rational basis for future

research between H. pylori and type 1 gNET but advise against such research in urticaria

where other mechanisms or proteins should be evaluated.

In conclusion, some human proteins associated with type 1 gNET like the HSP60 and eno-

lases retain common epitopes with H. pylori proteins, suggesting that molecular mimicry

could be a mechanism that explains the relationship between the microorganism and this dis-

ease. Our results allowed us to identify possible epitopes with molecular mimicry between H.

pylori and type 1 gNET; these regions are the most likely to be associated with cross-reactivity;

however, cross-reactivity requires in vitro studies to confirm. Additionally, our results suggest

with a high level of certainty that the probability of molecular mimicry between H. pylori and

the evaluated human urticaria-related proteins is low, so it is unlikely that they present cross-

reactivity, which suggests that new proteins should be investigated, or other mechanisms

explored to determine the relationship between H. pylori and chronic urticaria. However, stud-

ies evaluating the functional impact of this relationship are necessary.
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