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Abstract

Introducing the Industrial Internet of Things (IIoT) into traditional industrial processes
brings a new age of connectivity, productivity, and insight. Through the integration
of advanced sensors, communication technologies, and data analysis into industrial op-
erations, IIoT facilitates real-time monitoring, proactive maintenance, and improved
operational efficiency. Nonetheless, this heightened complexity and interconnection also
bring new challenges, upholding system dependability and safety. Deviations such as
unforeseen malfunctions and cyber attacks can potentially disrupt operations, resulting
in substantial financial setbacks and safety risks. Considering these issues, this thesis
presents an IIoT Anomaly Classification Framework designed to detect and categorize
anomalies, including failures, attacks, and other significant events. The research ad-
dresses the critical need for robust anomaly detection and classification in IIoT systems
by providing a comprehensive and scalable solution adaptable to various industrial con-
texts. The framework enhances modern industrial operations’ reliability, security, and
efficiency, paving the way for more resilient and intelligent IIoT systems.

The framework comprises two main components: an Anomaly Detection Model and
an Anomaly Classification Model. The Anomaly Detection Model operates unsuper-
vised, continuously monitoring system data to identify deviations from normal behavior
patterns. At the same time, the anomaly classification model categorizes these anomalies
based on historical data using machine learning algorithms, such as an autoencoder for
the detection phase and a transformer for the anomaly classifier. This dual-model ap-
proach allows for specialized and accurate identification and categorization of anomalies,
enhancing overall IIoT system reliability and security. The thesis outlines the develop-
ment and implementation of the framework, including creating a comprehensive IIoT
dataset and incorporating contextual information to improve detection and classification
accuracy. The proposed framework has been rigorously tested in realistic IIoT envi-
ronments, demonstrating its effectiveness and practicality. During the cross-validation
process, a precision of 0.95, recall of 0.88, and F1-score equal to 0.91 were obtained.
This research contributes significantly to IIoT, offering a valuable tool for improving
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industrial operations and laying the groundwork for future anomaly classification and
system resilience advancements.
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Chapter 1

Introduction

Integrating the Industrial Internet of Things (IIoT) into traditional industrial processes
has marked the beginning of a new era of connectivity, efficiency, and intelligence [1–3].
By embedding advanced sensors, communication technologies, and data analytics into
industrial operations, IIoT has enabled real-time monitoring, predictive maintenance,
and enhanced operational efficiency [4–6]. However, these systems’ increased complexity
and interconnectivity have also introduced new challenges, particularly in maintaining
system reliability and security [6]. Anomalies such as unexpected equipment failures and
cyber-attacks can disrupt operations, leading to significant financial losses and safety
risks [6–9].

Anomaly detection in the Industrial Internet of Things is a critical research issue
due to the vulnerability of IIoT networks to novel and complex cyber threats [1]. Unlike
traditional IT environments, the IIoT integrates cyber elements into core operational
processes, making the consequences of security breaches more severe [10]. The dynamic
and heterogeneous nature of IIoT environments, characterized by a vast array of devices
and communication protocols, complicates the detection of anomalies [11]. This needs
continuous research into sophisticated, adaptable anomaly detection methods that can
effectively discern between normal fluctuations in data and genuine security threats [12].

The significance of advancing anomaly detection in IIoT is underscored by recent
research efforts that employ diverse methodologies ranging from statistical approaches
to machine learning and deep learning techniques. Key works in this area include the
exploration of unsupervised techniques by Zhang et al. for multivariate time series
analysis in IIoT settings [10] and the approach of Ding et al. in adapting machine
learning models to handle concept drift in dynamic environments [13]. Additionally,
Truong et al. introduced a lightweight architecture suitable for edge computing devices,
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optimizing resource usage while maintaining high detection accuracy [12]. These studies
highlight the ongoing need for research that enhances detection capabilities and ensures
that anomaly detection systems are scalable, efficient, and capable of operating under
the constraints typical of IIoT environments.

1.1 Anomaly Classification in IIoT

The Industrial Internet of Things (IIoT) represents a significant leap in industrial au-
tomation and digital transformation. By interconnecting devices and systems through
advanced networks and integrating Cyber-Physical Systems (CPS), IIoT enhances indus-
trial operations’ efficiency, productivity, and adaptability [6–9]. However, this intercon-
nection also introduces vulnerabilities, making IIoT systems susceptible to anomalies.
Effective anomaly classification is critical for maintaining the integrity, safety, and reli-
ability of IIoT systems [6].

Anomaly classification in the Industrial Internet of Things (IIoT) remains an open
research issue due to the complexities inherent in distinguishing between anomalies such
as cyber-attacks and physical failures [14]. The challenge is amplified by the diversity
of IIoT environments where distinct anomalies may manifest similarly, complicating
accurate classification [15, 16]. For instance, Yang et al. [15] developed a data-driven
approach to classify physical faults and cyber-attacks in manufacturing motor drives.
Despite its effectiveness, this method relies heavily on specific motor data patterns and
may not generalize across IIoT systems, highlighting the need for more adaptable and
comprehensive solutions. Similarly, the solution described in Ganjkhani et al. [17] excels
in identifying specific electrical faults and attack types in power systems but does not
address the broad spectrum of anomalies present in IIoT domains.

Furthermore, existing solutions often focus on specific subsets of IIoT applications,
which limits their applicability in a broader context. For example, the methodology
by Zhang et al. [16] effectively distinguishes between sensor replay attacks and sensor
bias failures in cyber-physical systems using watermarks tailored to each threat type.
However, such a specialized approach may not be suitable for other IIoT applications
where different underlying mechanisms might cause anomalies. Liang et al. [18] propose
a scheme for multi-agent systems to minimize communication loss and enhance fault
diagnosis. While this method shows promise in smart grids, its complexity and the need
for extensive customization may hinder its deployment in less controlled or more het-
erogeneous environments. These examples underscore the persistent gap in developing
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effective anomaly classification systems that can dynamically adapt to the varied and
evolving landscapes of IIoT, which makes continuous research and innovation necessary
in this field.

1.2 Goals and Contributions

In the current state of the art, many researchers are concentrating on anomaly detec-
tion. However, anomalies must be classified to mitigate their effects on the IIoT. Since
Industrial Internet of Things systems support industrial operations, they must promptly
address malfunctions or cybersecurity threats. This requires the collaboration of various
teams, each with specific roles: for instance, maintenance staff handles physical failures,
while the IT department manages cyber attacks. Nevertheless, the detection and classi-
fication system must operate automatically with minimal human intervention to address
these anomalies quickly.

The main research question in this thesis is: How can an efficient IIoT anomaly
classification framework be proposed?

To answer this question, a series of goals were proposed that helped outline the
framework for anomaly classification in IIoT. These are summarized below.

• Create an unsupervised anomaly detection model to identify deviations from nor-
mal behavior in IIoT systems.

• Develop a supervised classification model that accurately categorizes detected
anomalies into specific types.

• Incorporate contextual data, such as operational conditions and historical trends,
to enhance anomaly detection and classification.

• Generate a labeled dataset with a wide range of anomalies. This dataset provides a
valuable resource for training and evaluating anomaly detection and classification
models.

• Implement the developed framework in realistic IIoT environments and rigorously
tested for effectiveness and practicality.

Considering the above, we propose an IIoT Anomaly Classification Framework to de-
tect and categorize anomalies such as failures or attacks. This research aims to contribute
significantly to the field by addressing the critical need for robust anomaly detection and
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classification in IIoT systems. It provides a comprehensive and scalable solution that
can be adapted to various industrial contexts. The proposed framework offers a valu-
able tool for improving modern industrial operations’ reliability, security, and efficiency,
paving the way for more resilient and intelligent IIoT systems. This research makes
several significant contributions to the field of IIoT:

• Comprehensive Review of Existing Research: Conducting an extensive review of
current anomaly detection and classification methodologies within IIoT, identifying
gaps, and highlighting opportunities for innovation.

• Creation of a Comprehensive IIoT Dataset: Providing a publicly available dataset
with labeled anomalies collected from a testbed that emulates a cyber-physical
system monitored by an IIoT system, including failures and cyber-attacks, will
facilitate future research and development.

• Incorporation of Contextual Information: Demonstrating the value of integrating
contextual data into anomaly detection and classification, leading to more accurate
and reliable results and allowing the classifier to differentiate between normal CPS
or IIoT events or situations caused by failures or attacks.

• Development of an IIoT anomaly Classification Framework: Introducing a new
framework that combines machine learning techniques with traditional statistical
methods to improve classification speed and accuracy. The goal was to create a
framework that can be easily scaled and adjusted to meet the diverse requirements
of various sectors.

• Real-World Testing and Validation: Implementing the proposed frameworks in
emulated settings to validate their effectiveness and adaptability and conducting
extensive testing and validation of the framework using a realistic testbed envi-
ronment, ensuring its applicability in real-world industrial settings.

• Discuss Implications for Future Research and Practice. Anomaly classification is
an ongoing process that requires continuous monitoring and model updates. Based
on the implementation results, exhaustive analysis, and knowledge provided, some
lines of future work are described in the field of anomaly classification in IIoT
systems.
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1.3 Outline of the Thesis

The rest of the thesis is structured as follows:
Chapter 2: Background. This chapter delves into anomaly classification in IIoT

environments. It explores the structural complexities of IIoT architecture, detailing a
layered approach that facilitates efficient data processing and analysis. By combining
theoretical knowledge with practical applications, this chapter addresses the technologi-
cal foundations of IIoT but also showcases innovative machine learning and deep learning
techniques designed for robust anomaly detection.

Chapter 3: State of the Art. This chapter reviews the existing literature on IIoT,
anomaly detection, and classification methods. It discusses the evolution of IIoT sys-
tems, the types of anomalies commonly encountered, and the current state-of-the-art
techniques for anomaly detection and classification. Additionally, it highlights the chal-
lenges and limitations of existing approaches, emphasizing the need for a more robust
and comprehensive framework.

Chapter 4: Framework for Anomaly Classification. It describes the methodology
used in developing the IIoT anomaly classification framework. It includes detailed ex-
planations of the data collection process, the processing techniques employed, and the
selection of appropriate machine learning algorithms for anomaly detection and classifi-
cation models. The chapter also discusses the integration of contextual information and
the creation of the IIoT dataset.

Chapter 5: Framework Implementation Results. Presents the implementation results
for the IIoT anomaly classification framework. It includes a step-by-step description of
the framework’s architecture, development environment, and software tools. The chapter
also provides an overview of the testbed environment used for validation and the specific
scenarios and use cases tested.

Chapter 6: Results. This chapter presents other results of the framework’s implemen-
tation and validation. It includes detailed performance metrics, such as precision, recall,
and F1-score. The chapter also includes validation results on a testbed that emulates a
cyber-physical system monitored by an IIoT system. It also provides an in-depth discus-
sion of the results, highlighting the strengths and limitations of the proposed framework
and the implications of the findings for IIoT anomaly detection and classification.

Chapter 7: Conclusion and Future Work. Summarizes the key findings of the re-
search, discusses the contributions made to the field, and outlines the proposed frame-
work’s potential impact on industrial operations. It also identifies areas for future re-
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search and development, including potential enhancements to the framework and new
applications in other industrial domains.

Appendix: This includes additional data, figures, and supplementary information
supporting these research findings. It describes the datasets, machine learning algo-
rithms, and specific parameters and configurations tested. The appendix also includes
code snippets and implementation details for reproducibility.

1.4 Associated Publications and Software

The state of the art presented in Chapter 3 is based on [14]:
M. Rodríguez, D. P. Tobón, and D. Múnera, “Anomaly classification in industrial

internet of things: A review,” Intelligent Systems with Applications, p. 200232, 2023.

Chapter 6 includes results presented at the International Engineering Congress IC-
EXPOI 2022 and published in [19]:

C. EUREKA, G. de Antioquia, et al., “Engineering for transformation,” in Expo
Ingenieria, Fondo Editorial EIA, 2022.

Results described in Chapter 5 and Chapter 6 were published in:
M. Rodríguez, D. P. Tobón, and D. Múnera, "A Framework for Anomaly Classifica-

tion in Industrial Internet of Things Systems", Internet of Things, IOT-D-24-02467.

At the time of submission of the corrected thesis, an article has been submitted for
evaluation:

M. Rodríguez, D. P. Tobón, and D. Múnera, "Classification of anomalies in IIoT edge
devices," Revista Facultad de Ingeniería UdeA.

The dataset used to train the models described in chapters 5 and 6 is published on
https://github.com/mluciarodriguez/iiot_anomaly_classification.

The code that implements the algorithms described in chapter 5 and 6 is published
on https://github.com/mluciarodriguez/iiot_anomaly_classification.



Chapter 2

Background

In the evolving landscape of industrial automation and digital transformation, the smart
factory concept symbolizes a leap toward the future of manufacturing. Anchored in the
principles of Industry 4.0, smart factories aim to revolutionize production processes
through the seamless integration of Cyber-Physical Systems (CPS), the Industrial Inter-
net of Things (IIoT), Big Data analytics, cloud computing, and cutting-edge artificial
intelligence technologies [20]. By leveraging the IIoT, smart factories can monitor, ana-
lyze, and automate operations in real-time, significantly reducing downtime, optimizing
performance, and ensuring safety, thereby leading to the creation of highly adaptive and
self-optimizing production environments [10].

Within this context, a critical challenge is the effective detection and classification
of anomalies, which are essential for maintaining the integrity, safety, and efficiency of
these sophisticated systems [21]. Anomalies, ranging from simple equipment malfunc-
tions to complex cyber-attacks, need quick identification and appropriate classification
to prevent potential disruptions [22]. This chapter delves into anomaly detection in IIoT
environments, highlighting the importance of domain-specific knowledge and classifying
anomalies as failures or attacks. It further explores the structural complexities of IIoT
architecture, detailing a layered approach that facilitates efficient data processing and
analysis. By combining theoretical knowledge with practical applications, this chap-
ter addresses the technological foundations of IIoT and showcases innovative machine
learning and deep learning techniques designed for robust anomaly detection.

This chapter outlines a comprehensive approach to establishing and enhancing smart
factory operations within Industry 4.0, particularly anomaly detection and classification
within the Industrial Internet of Things (IIoT). The original contributions within this
chapter are shown as follows:
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• The chapter contributes to understanding how emerging technologies such as CPS,
IoT, IIoT, Big Data, cloud computing, and AI are being leveraged to transform
traditional manufacturing into smart factory operations. It emphasizes the role
of these technologies in achieving intelligent production through interconnected
manufacturing systems and vertical integration of production procedures.

• This background highlights the need for domain-specific knowledge in operating
CPS and IIoT systems. It underscores the importance of expertise in distinguishing
normal from abnormal operations within industrial processes.

• This chapter offers a novel classification of anomalies as events, failures, and attacks
and provides a detailed blueprint for categorizing them. This classification aids in
directing attention to the relevant work teams equipped with the specific domain
knowledge necessary for addressing each type of anomaly.

• The delineation of the IIoT system into perception, network, and application layers
contributes to structuring IIoT operations. This layered architecture simplifies
the complexity of IIoT systems, ensuring efficient data processing, analysis, and
storage at different hierarchical levels.

• This chapter introduces various statistical methods, machine learning algorithms,
and deep learning techniques tailored for anomaly detection in high-dimensional
IoT datasets. This includes the application of Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), Autoencoders, and Generative Ad-
versarial Networks (GANs) for modeling complex relationships and temporal cor-
relations in IIoT data.

• Addressing the challenge of unbalanced datasets in anomaly detection, the chapter
outlines strategies such as resampling methods, classifier adaptation, ensemble
methods, cost-sensitive approaches, and data augmentation techniques. These
strategies are crucial for improving the accuracy of anomaly detection models in
scenarios where the minority class holds greater significance.

• Exploring various techniques for hyperparameter optimization, including grid search,
random search, Bayesian optimization, and evolutionary algorithms, significantly
contributes to enhancing the performance of machine learning models in IIoT ap-
plications.
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In summary, the chapter’s original contributions lie in its holistic approach to integrating
advanced technologies for smart manufacturing. It also contributes methodologically by
outlining techniques and strategies to address common challenges in IIoT applications,
such as data imbalance, anomaly classification, and hyperparameter optimization. The
structure of this chapter is based on the anomaly classification framework architecture
described in the introductory chapter of this document. Each section here explains the
concepts associated with implementing the stages of the proposed framework for anomaly
classification in IIoT systems. It begins by describing the components of a smart factory,
such as CPS and IIoT. Then, some techniques for detecting and classifying anomalies
are discussed in detail. Data handling before training models are discussed below. Some
metrics and optimization techniques are described to close.

2.1 Smart Factory: CPS and IIoT

The smart factory aims to achieve intelligent production through interconnected manu-
facturing systems and vertical integration of production procedures. The smart factory
utilizes automation, embedded systems, and information systems for Industry 4.0 [20].
It is a shift from traditional to smart manufacturing, supported by emerging technolo-
gies such as Cyber-Physical Systems (CPS), Internet of Things (IoT), Big Data, cloud
computing, and advanced Artificial Intelligence [20]. The Industrial Internet of Things
(IIoT) refers to the fusion of physical systems with digital technology. This integration
enables Cyber-Physical Systems to optimize production processes, reduce downtime,
improve safety, and introduce new ways to personalize production [10, 12, 23].

In this manuscript, the term cyber-physical system refers to an automated industrial
process. In contrast, Industrial Internet of Things is the system that monitors the
CPS through cloud applications to optimize its performance. This thesis deals with
the classification of anomalies, specifically in IIoT, not in CPS, since the classification of
anomalies in IIoT is a topic that has not been treated in depth in the scientific literature.
This statement is developed in detail in the state-of-the-art chapter.

2.1.1 Cyber-Physical System

An industrial process is a set of organized operations or stages designed to carry out
specific industrial activities. These processes involve converting raw materials, energy,
or components into finished products or services [10]. A cyber-physical system (CPS)
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integrates computational (SCADA and PLCs) and physical processes with computer
algorithms monitoring and controlling physical elements, with feedback loops where
physical processes affect computations and vice versa [10, 12, 23]. Specialized knowledge
is required to operate a CPS optimally. Each industrial process represents a specific
domain knowledge and requires expertise or a deep understanding of a particular area,
field, or discipline [24]. This knowledge encompasses the concepts, techniques, tools, and
vocabulary unique to that domain. For example, the maintenance team of an industrial
process must know how it works and the value ranges for the variables to distinguish
normal from abnormal behavior [25].

2.1.2 Internet of Things

The Internet of Things (IoT) refers to a network of physical objects, commonly known
as things, equipped with sensors, software, and other advanced technologies [1–3]. This
enables them to connect and share data with other devices and systems via Internet.
The most significant advantage of IoT devices is their ability to collect and transmit
data, which facilitates remote monitoring, automation, and a wide range of smart ap-
plications. These applications can improve efficiency, convenience, safety, and health
[4–6]. Integrating IoT devices into the web of connectivity presents various challenges,
ranging from security and privacy to interoperability and standards development [6].
Nevertheless, IoT continues to grow in popularity, fueled by advancements in wireless
networking technologies, the miniaturization of electronics, and the widespread avail-
ability of internet access [1, 4–6].

2.1.3 Industrial Internet of Things

For [26], IIoT is the application of IoT in industrial control systems. The Industrial
Internet of Things (IIoT) is a network of connected devices and sensors in various in-
dustrial applications. Its main function is to collect and analyze real-time data, which,
in turn, helps to improve efficiency, reliability, and decision-making processes [6–9]. By
leveraging advanced technologies such as cloud computing, machine learning, and big
data analytics, IIoT optimizes production processes, reduces operational costs, and im-
proves product quality. Additionally, it enables higher levels of automation, predictive
maintenance, and safer working environments, resulting in significant improvements in
performance and productivity [9, 12, 27].

In modern smart factories, using Industrial Internet of Things technology has enabled
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the implementation of predictive maintenance techniques [9, 12]. By leveraging real-time
data from sensors and other connected devices, predictive maintenance algorithms can
detect potential machine failures before they occur. This allows for proactive mainte-
nance and repairs, reducing downtime and increasing equipment lifespan. Ultimately,
this approach can lead to increased efficiency, reduced costs, and improved safety in
manufacturing operations [6–8, 27].

IIoT Architecture

An Industrial Internet of Things (IIoT) system is designed with a layered approach to
handle the complexity and scale of industrial operations efficiently. This architecture
integrates various devices, platforms, and services [4, 5, 7, 8]. Although there is no
consensus on the exact number of layers in the architecture, it can be streamlined into
three primary layers. These layers are responsible for device integration, data processing,
and application services, ensuring seamless operation. Here is a brief overview of these
layers,

• Perception Layer: Smart devices, sensors, and actuators are incorporated into
the industrial equipment to create a foundational layer. This layer performs data
collection directly from the environment. The devices in this layer measure various
physical parameters such as temperature, pressure, and vibration. Consequently,
they become the primary source of real-time data necessary for the efficient oper-
ation of the machinery [7, 9, 28].

• Network Layer: It receives the processed information the perception layer pro-
vides and transmits it to the application. The network layer integrates various
devices (e.g., switching, gateway) and various communication technologies (e.g.,
Bluetooth, Wi-Fi) [28]. In this thesis, the network layer is on the edge of the IIoT
system and acts as a mediator by focusing on processing local data, analyzing
it, and making preliminary decisions close to the data source. Its functionalities
include data processing, filtering, and minor analytics designed to reduce latency,
manage bandwidth efficiently, and support immediate operational responses. Fur-
thermore, this layer may have localized security measures to ensure data integrity
at the network’s edge [7, 9].

• Application Layer: The Cloud Layer is the topmost level in this architecture
and is responsible for processing, analyzing, and storing massive amounts of data.
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It hosts IIoT platforms with advanced analytics, machine learning capabilities,
and comprehensive data management tools. This layer enables long-term data
analysis, trend prediction, and strategic decision-making. Additionally, it sup-
ports device management and application deployment while integrating security
protocols across the entire IIoT system [7, 9, 28].

Figure 2.1 shows the IIoT Architecture suggested in this thesis. It comprises three
layers: Perception, Network, and Application. The schematic illustrates IIoT separated
from the Cyber-Physical System.

IIoT Architecture

CYBER-PHYSICAL 
SYSTEM (CPS)

PERCEPTION 
LAYER

NETWORK 
LAYER 

APPLICATION 
LAYER

Figure 2.1: IIoT Architecture comprises three layers: Perception, Network, and Appli-
cation. The schematic illustrates IIoT separated from the Cyber-Physical System.

2.2 Anomalies in IIoT Systems

Implementing an IIoT system poses some notable challenges, including security issues,
unusual behavior, and service interruptions. It remains a challenge to tackle security
and resilience concerns, which calls for a focus on improving security measures [22]. By
detecting anomalies, we can gain insights and prevent potential risks. Anomaly detection
identifies some rare values that deviate significantly from the majority of data [21].
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An anomaly refers to any value significantly different from most of the remaining
values in a dataset [29, 30]. Anomalies can arise from a variety of factors, including
malicious attacks, sensor faults, and major environmental changes, as recorded by the
sensors [31–33]. The causes of these anomalies can vary, but their effects are not nec-
essarily distinct. For example, a malicious attack can be launched to take advantage of
IIoT network’s computing power or to damage the system by generating false data. In
the former case, the attack could manifest as excess erroneous network traffic, while in
the latter, it could appear as false messages passed off as legitimate [11, 34].

2.2.1 Anomaly Types

The concept of anomalies in datasets has been widely discussed in the literature, with
three main types identified: point anomalies, contextual anomalies, and collective anoma-
lies [4, 32, 34]. On the one hand, point anomalies refer to values that significantly deviate
from other values in a dataset, representing a single point of interest [11]. On the other
hand, contextual anomalies are values that may or may not be considered outliers de-
pending on the context in which they appear. A value considered an outlier in one
context may not be in another. Finally, collective anomalies are groups of related values
that largely differ from the other values in the dataset [4, 30, 34, 35].

This thesis uses the classification given by Ghosh et al. in [31]. They classify the
anomalies as events, failures, and attacks. This classification helps direct the attention
of the relevant enterprise work teams with specific domain knowledge. For instance, the
maintenance staff can resolve device failures, while the IT team can counter cyber at-
tacks. This research reserves the term ‘event’ for samples initially classified as anomalies
that are subsequently labeled as normal by the classifier.

Saurav et al. [36] defined an anomaly as a behavior that deviates from the norm.
While Ghosh et al. [31] refers to an outlier as an observation or a subset of observations
that deviate significantly from the rest of the dataset. Additionally, the latter also
defines event, failure, and attack:

• For Ghosh et al., an event refers to an occurrence that causes a change in the
current state of the environment. This could be a natural phenomenon that affects
the values of monitored variables. Such anomalies typically persist and change
the pattern of data. However, in this thesis, the term ‘event’ will be used to
label a sample classified as ‘abnormal’ by the anomaly detector and, subsequently,
classified as ‘normal’ by the anomaly classifier. This contradiction will make it
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necessary for a human operator to manually diagnose the sample’s label.

However, it can be challenging to differentiate between an error caused by faulty
sensors and an event since both can cause prolonged anomalies. Spatial correlation
is an essential tool for identifying the type of anomaly since measurements from
faulty sensors lack spatial correlation, unlike data from events.

• A failure happens when sensor data is incorrectly measured due to a device mal-
function or a lack of calibration. Fault-induced outliers are more common than
those resulting from events, and they differ from other data because they arise ran-
domly. These errors can compromise data quality, making it necessary to identify
and remove them to ensure efficient use of data.

• In a sensor network or IIoT devices, an attack refers to the malicious infiltration of
one or more nodes. This can deceive other nodes into participating and compromise
the entire network’s security. The most common method of system intrusion is
wireless communication.

Differentiating between failure and attack is necessary for reliable data and prevent-
ing malicious attacks [29]. Industrial control systems based on IIoT require a lightweight,
accurate anomaly detection solution to identify complex threats quickly [11, 12, 37].

2.2.2 Anomaly Detection

Anomaly Detection (AD) is the process of identifying data points, events, or observations
that deviate significantly from the normal behavior of a dataset. These anomalies are
often called outliers and can signify critical incidents such as system failures or security
breaches [10, 12, 13, 33]. In industrial settings, AD solution monitors equipment to
predict and prevent failures. The main objective of anomaly detection is to uncover these
irregularities that traditional statistical methods might not identify due to their rarity or
unusual nature [34, 37]. The anomaly score is the prediction error for each timestamp,
and instances, where the score exceeds the threshold, are classified as anomalies [33, 37].

Accurately defining what constitutes normal behavior is the key to successful anomaly
detection. However, this can be challenging as normal behavior can vary significantly
across different datasets and contexts. Various techniques can be used for anomaly detec-
tion, ranging from simple statistical methods to complex machine-learning algorithms.
The latter can learn the definition of normal from the data, making it an effective way
to detect anomalies [33, 34].
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2.2.3 Anomaly Classification

Industrial Internet of Things encompasses a network of interconnected devices and ma-
chines that communicate with each other and human users, enabling advanced moni-
toring, analysis, and automation of industrial processes [16]. Classifying anomalies in
the IIoT is vital for several reasons, all of which contribute to industrial operations’ en-
hanced efficiency, safety, and reliability of predictive maintenance, quality control, safety
and compliance, operational efficiency, resource optimization, cybersecurity, customiza-
tion, and adaptation [38, 39]. In the context of Industrial Internet of Things, identifying
anomalies is critical in preventing adverse outcomes and enabling positive improvements
in industrial operations. To achieve this, advanced machine learning and data analytics
technologies are being increasingly deployed to enhance anomaly classification in IIoT.
This makes it a vital area of focus for industries looking to leverage the full potential of
digital transformation [38, 39].

2.2.4 Anomaly Detection and Classification Techniques

Detecting anomalies has become necessary in data analytics and is widely investigated
in statistics and machine learning [9, 32]. The prediction-based method predicts future
time series using the fitted model on the training data. It detects anomalies based
on the difference between the predicted and actual value [9, 37]. Anomaly detection
and classification in the Industrial Internet of Things (IIoT) are pivotal for maintaining
industrial systems’ integrity, safety, and efficiency [9, 32]. Most supervised learning
techniques that use binary classifiers to detect anomalies can be used as multi-class
classifiers to identify the anomaly that affects the IIoT [9, 37]. Below is a comprehensive
overview of these techniques.

Statistical Methods

Statistical Methods set thresholds for expected behavior based on historical data [9, 32,
40].

Autoregressive models help detect anomalies by assigning an anomaly score based
on the difference between the actual value and the predicted one [41]. The most com-
mon types of autoregressive models for univariate time series are Autoregression (AR),
Moving Average (MA), Autoregressive Moving Average (ARMA), and Autoregressive
Integrated Moving Average (ARIMA). For multivariate time series, the Vector Autore-
gression (VAR) model is a common type of regression model [35, 40–42].



16 Background

Control charts are tools used for statistical process control. They help monitor
the shift in mean and variance over time series data. The primary objective of control
charts is to identify whether the variation in the process is caused by natural variations
(background noise) or some external factor. When the process is under control, it
indicates the presence of natural variations. On the other hand, when the process is out
of control, it shows the occurrence of special variations [35, 43].

Spectral techniques estimate the data by merging attributes representing most
data variability. These techniques assume the data can be embedded in a lower-dimensional
subspace, where normal instances and anomalies appear significantly different [44]. Two
popular methods in this category are Principal Component Analysis (PCA) and Singular
Spectrum Analysis (SSA) [35].

Machine Learning Algorithms

Machine learning is crucial in anomaly detection in Industrial Internet of Things. Anomaly
detection aims to identify data points, events, or observations that deviate significantly
from the dataset’s normal behavior. Machine learning models can automate and en-
hance the accuracy of detecting these anomalies [2, 9, 32, 35, 40]. Here’s an overview of
how machine learning is applied in anomaly detection,

Supervised Learning. Techniques such as Decision Trees (DT), Support Vector
Machines (SVM), and Gradient Boosting Machines (GBM) are utilized when historical
data is available as labeled normal or anomalous [9, 32]. Tree-based methods split data
into non-overlapping leaves using tree structures, making them particularly effective for
high-dimensional and non-gaussian data distributions [35].

Unsupervised Learning. Clustering is a type of unsupervised machine learning
that involves dividing data points into several clusters to maximize the similarity between
points within the same cluster and minimize the similarity between different clusters.
The effectiveness of clustering is determined by two criteria: maximum inter-cluster
distance and minimum intra-cluster distance [35, 45–47]. Algorithms such as K-means
clustering and Principal Component Analysis (PCA) find patterns or groupings in data
without pre-labeled classes, identifying anomalies as outliers.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a widely
used unsupervised clustering approach that requires little domain expertise and can
handle relatively large samples. It works because a point is considered a part of a
cluster if it is closely situated to many other points from the same cluster. Low-density
areas often separate high-density regions [35].
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Semi-Supervised Learning. In semi-supervised algorithms, the model is trained
only on majority class data. The assumption is that the class of interest is either
unknown or too rare to include in training. The model learns only the majority class
behavior and predicts whether a new data point fits that behavior. Semi-supervised
learning is used when a mix of a small amount of labeled data and a larger volume of
unlabeled data improves the model’s detection capabilities [23].

Deep Learning

Recent improvements in classification for high-dimensional IoT datasets are based on
deep learning techniques. These approaches model complex, highly nonlinear inter-
relationships between multiple sensors and efficiently capture temporal correlation [35].
Complex algorithms that capture high-level features in datasets are built with neural
networks [33, 37]:

Convolutional neural networks (CNNs) are feed-forward deep neural networks
initially developed for image analysis but are now also used for processing multidimen-
sional time series and effectively extracting correlations. In CNNs, convolution opera-
tions are used in at least one layer to extract patterns from the underlying spatiotemporal
structure of the time series [33, 35, 37].

Recurrent Neural Networks. One popular method for classification in time series
data using deep neural networks involves regression techniques to forecast one or more
future values based on past values. The difference between the predicted and actual
values is then calculated to determine if the predicted point is in a class or not [35].
Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM), and Gated
Recurrent Units (GRU) networks are examples of this method for time-series data [33,
37].

A Multilayer Perceptron (MLP) is a class of feedforward artificial neural network
(ANN) that consists of at least three layers of nodes, such as an input layer, one or more
hidden layers, and an output layer. Unlike single-layer perceptrons, which can only learn
linear functions, MLPs can learn to model non-linear relationships due to their multiple
layers and the use of non-linear activation functions. This makes MLPs a powerful tool
for many machine learning tasks, including classification, regression, and even feature
learning in deep learning contexts [33, 35, 37].

Transformer is a powerful Natural Language Processing (NLP) model designed
for translation tasks. However, it has recently demonstrated impressive performance in
time series processing [48]. One of the significant contributions of Transformer is its self-
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attention mechanism incorporated into the neural network [49]. A typical Transformer
model comprises two primary components: the encoder and the decoder. On the one
hand, the encoder processes the input sequence and transforms it into a continuous
representation that holds all the information learned from the input. On the other
hand, the decoder produces the output sequence based on the encoded information and
all previously generated elements of the output [10, 11, 13, 49, 50].

Generative Adversarial Networks (GANs) is a machine learning framework de-
veloped in 2014 by Ian Goodfellow and his team [51]. These frameworks consist of two
neural networks - a generator and a discriminator - that are trained concurrently in a
competitive manner [48, 51]. The training method is a zero-sum game in which the
generator attempts to increase the probability of the discriminator making a mistake.
In contrast, the discriminator seeks to distinguish real data from fake data better. This
game continues until the discriminator can no longer easily differentiate between real
and generated data, indicating that the generator has learned to create highly realistic
data [48, 51].

Unsupervised learning techniques like GANs have been used to detect time series
data anomalies. To detect anomalies, GAN-based methods primarily concentrate on
generating distinctive features by utilizing adversarial training on normal samples. This
results in the features of the abnormal samples being significantly different from those
of normal samples, and this difference is reflected in the reconstruction error and dis-
crimination value [30].

Ensemble Methods. Combining multiple models to improve anomaly detection
accuracies, such as Random Forests and ensembles of autoencoders, where predictions
from several models are aggregated [23, 46].

Federated learning is a machine learning approach that enables a model to be
trained across multiple decentralized devices or servers holding local data samples with-
out exchanging them. This technique is beneficial for privacy preservation, data security,
and reducing the need for data centralization and transmission. It is particularly rel-
evant in scenarios where data privacy is paramount, such as healthcare, finance, and
mobile device usage [46, 47, 52]

Autoencoders are artificial neural networks used for dimensionality reduction or
feature learning. They encode an input into a lower-dimensional form and then re-
construct the output from this representation [53]. They consist of an encoder and a
decoder, which compress input data and regenerate it from the latent space represen-
tation [9, 53]. Autoencoders are trained by minimizing the reconstruction error, which
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is the difference between the original input and its reconstruction [53]. This encourages
the network to learn useful data properties, making autoencoders useful for anomaly
detection, denoising, and generative models [9]. Another class of Autoencoders is the
Variational Autoencoders (VAEs), which replace the reconstruction error with the re-
construction probability. VAEs are unsupervised deep-learning generative methods that
use Bayesian inference to model the training data distribution [33, 35, 37].

Threshold Values. A threshold value distinguishes normal and unusual data points.
An assigned score is used to differentiate between the two. Techniques balancing sensi-
tivity and specificity are used to calculate the best threshold value. Common approaches
are used for autoencoders in anomaly detection [53, 54].

• Fixed Threshold. A predefined threshold value is often based on domain knowledge
or empirical observation. You can also take the maximum value of the residual as
a threshold when the model is evaluated with normal data [9].

• Mean Plus Standard Deviation. Set the threshold as the mean reconstruction
error of the training data plus a multiple of the standard deviation. This method
assumes that the normal data’s reconstruction errors follow a Gaussian distribution
[53].

• Iterative Method. To find the best threshold value for a given metric, start with a
low threshold and increase it by a specific amount on each iteration. Then, calcu-
late the metric to optimize, such as F1-score, Precision-Recall Curve, or Receiver
Operating Characteristic (ROC) Curve, and choose the threshold that gives the
best metric value [40].

• Dynamic Thresholding. In dynamic environments, a fixed threshold may not be
effective. Adaptive thresholding techniques adjust the threshold based on changing
data patterns, recent performance, and feedback [53–55].

2.3 Data for Anomaly Classification in IIoT

Accurate data from smart devices is crucial for the success of the Industrial Internet of
Things. It helps monitor and optimize systems, anticipate potential issues, and make
informed decisions to enhance productivity and efficiency. This section will discuss
aspects that must be considered when selecting the variables and processing the data
before using them to train the anomaly detection and classification models.
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2.3.1 Feature Selection

Currently, a lot of industrial equipment is fitted with multiple sensors that keep track
of the equipment’s condition. This produces a significant amount of time series data
with numerous variables. However, identifying irregularities in this data is difficult
because of the complex temporal relationship between each variable and the correlations
between different variables. Although numerous algorithms have been proposed, only
a small number have effectively tackled these challenges when identifying anomalies in
multivariate time series data [10]. The excessive and unnecessary features present in
data with high dimensions lead to computational complexity and significantly decrease
the precision and effectiveness of classification techniques [2, 56]. Uninformative features
can be divided into low variance, highly correlated, and highly collinear. Low variance
features have slight variation among samples and should be removed. Highly correlated
features show similar patterns among samples and can complicate the learning process.
Highly collinear features have cause-effect relationships and can also complicate learning
[2, 57].

Utilizing unprocessed time series data as input for training might not be the most
effective for industrial applications. Therefore, they suggest that extracting or choosing
features from time series data through statistical techniques or human expertise could
significantly simplify the dataset [30]. Dimensionality reduction techniques can decrease
the number of features that describe an object, making it easier to understand anomalies
[29]. Different feature selection techniques can be used for IIoT security, including gini-
impurity, chi-square, information gain, mutual information, and feature correlation [2].
Feature correlation selects informative features based on a given threshold range. This
technique has achieved competitive detection accuracy while maintaining a reasonable
level of complexity compared to other selection methods. A correlation-based feature se-
lection approach calculates the correlation between each feature and the target variable.
The Pearson correlation coefficient, Spearman index, and mutual information technique
are commonly used to implement this approach. The goal is to select features that
are not correlated to one another to reduce multicollinearity [2]. Pearson correlation is
used when a linear relation exists between variables; the Spearman index is helpful with
no linear relations, and mutual information determines the correlation between random
features.

Dimensionality reduction techniques can be divided into two main categories: feature
extraction and feature selection. On the one hand, feature extraction involves reducing
the dimensionality of data by projecting the original features into a new low-dimensional
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feature space [2, 56]. Two standard methods used for feature extraction are principal
component analysis and linear decision analysis. On the other hand, feature selection
involves selecting a subset of features from the original feature space that is more effective
in predicting class labels and has a lower feature dimensionality. There are four categories
of feature selection methods: wrapper, filter, hybrid, and embedded methods. Wrapper
methods evaluate the predictive accuracy of a chosen learning algorithm to determine
the quality of a selected feature subset. Filter methods, in contrast, are not reliant on
predetermined learning algorithms. Hybrid methods are a combination of both filter
and wrapper methods. Finally, embedded methods incorporate feature selection into
the learning algorithm’s training process [2, 56].

Data with high dimensions can be problematic due to excessive and unnecessary
features. These features can lead to computational complexity, reducing the precision
and effectiveness of classification techniques [2, 56]. Researchers often perform feature
extraction or selection to effectively train their anomaly detection models. In Chapter
3, you can find a description of the most commonly used methods for reducing the
dimensionality of a dataset. However, some authors have developed their methods.

Authors in [58] describe a statistical methodology used for dimensionality reduction
in time series called Symbolic Essential Attributes Approximation (SEAA). This ap-
proach helps to simplify multidimensional time series data by creating a new nominal
representation of the original data series. SEAA is based on the concept of data series
envelopes and essential attributes generated by a multilayer neural network. Meanwhile,
MIMIC-FS is a feature selection method for processing information on the Internet of
Things. This method employs a statistical measure known as the maximal information
coefficient (MIC) to determine the relevance and redundancy of features to class labels.
The MIC can capture various types of correlations between variables, including linear,
nonlinear, and nonfunctional correlations. This makes the feature selection process more
accurate and efficient [56].

Additionally, [59] introduced a wrapper-based algorithm called CorrAUC to select
useful features for machine learning algorithms. The method uses the area under the
curve (AUC) metric to test its effectiveness. While [60] designed a method for selecting
features in industrial control systems using a genetic algorithm. This method eliminates
redundant features by utilizing a mechanism for feature ranking fusion in the genetic
algorithm. Furthermore, the proposed method incorporates the growing tree clustering
idea to enhance the global merit-seeking speed.
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2.3.2 Context Information

The status of an environment is determined by various contextual factors such as users,
applications, locations, or devices. To ensure interoperability, pervasive computational
systems need to have the ability to share context, which helps them maintain a shared
understanding of contextual information. This information is closely linked to data hu-
mans can easily understand while reading. Therefore, sharing contextual information
is essential in facilitating efficient communication between different systems and stake-
holders involved [61].

Any information that can be used to characterize the situation of an entity is referred
to as context [62]. An entity, which can be a machine, place, or object, is considered to be
relevant to the interaction between a user and an application [63]. Context-awareness
is an aspect of Internet of Things applications, especially in the industrial sector. It
enables providing relevant and appropriate services to users based on their understanding
of the current situation and all entities involved. In simpler terms, context-awareness
involves using information collected from various sources to provide services that cater
to a user’s specific needs and expectations [62]. Using context information extracted
from the industrial process can help classify the type of anomaly in the IIoT system.
For instance, sound sensors collect raw data, but interpreting this data to determine
whether the motor is off or the sensor is failing is context information. Some context
variables can be data from the CPS, external such as environmental, commercial, and
production, or artificially created from equations and data available. Typically, the
choice of context variables is made by an expert who knows the industrial process and
the IIoT system.

2.3.3 Data Processing

The success of the Industrial Internet of Things relies on gathering accurate data from
smart devices throughout the industrial facility. This data is used to make informed
decisions and provide services. However, IIoT devices’ data can often be uncertain,
noisy, erroneous, voluminous, and widely scattered. Additionally, this data can exhibit
gradual changes, continuity, correlations, periodic patterns, and behaviors consistent
with Markovian processes [4, 5]. Poor data quality can lead to incorrect decisions,
declining user engagement, and acceptance of IIoT services. Therefore, it is crucial to
maintain high data quality standards to ensure widespread adoption and acceptance of
the IoT paradigm and services by users [4].
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Converting raw data into a structured and meaningful format suitable for analysis
is called data processing [4]. This process is decisive as it ensures that data is clean,
consistent, and high-quality, making it suitable for machine learning-based classification
models. Data processing plays a significant role in preparing the data for analysis and en-
suring its reliability [2]. The data processing includes feature elimination, missing value
handling, duplicate removal, encoding of non-numerical features, and normalization [2].

Exploratory Data Analysis

When researchers begin studying a dataset, they usually conduct an Exploratory Data
Analysis (EDA) as the first step. This crucial process involves using various statistical
graphs and data visualization techniques to scrutinize the dataset and identify any pat-
terns, anomalies, or features that may be present. By doing so, the researchers can test
any hypotheses and verify assumptions that they have made about the data. The EDA
process forms the foundation of any data-driven research, helping researchers to gain a
deeper understanding of the dataset and the insights it may hold [46].

Missing Data

Missing values can cause significant gaps in the information available to the user regard-
ing a particular entity or phenomenon. Since these datasets serve as input for knowl-
edge derivation processes, such gaps can lead to incomplete understanding or erroneous
decision-making. Therefore, missing values can harm the overall quality of the data
[4, 64, 65]. Here are some strategies we can employ to handle missing data effectively:

• Delete rows or columns with missing values. Row deletion removes rows with
missing values if the dataset is large and the number of rows with missing data
is relatively small. Column deletion removes columns with a high percentage of
missing values, especially if those columns are not critical for analysis or modeling
[65].

• Impute missing values. Mean/median/mode imputation replaces missing values
with the column’s mean, median, or mode. This is useful for numerical data.
Another strategy is forward or backward fill, which carries forward the previous
data point’s value or fills backward with the following data point’s value. This is
particularly useful in time-series data [65].
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• Hot-deck imputation. It is a statistical method used for handling missing data
in datasets. This technique involves filling in missing data with observed values
from similar records within the same dataset. The term “hot-deck” implies that
the data used to fill in the gaps are drawn from the same dataset (“deck”) and are
current or “hot,” meaning they are from the same period or study context [66, 67].

• Assign a unique value to missing data, such as -1 for numeric columns or a tag like
‘unknown’ for categorical columns. This can be useful when the fact that data is
missing may carry its information [65].

• Use algorithms that support missing values. Specific algorithms inherently support
missing values, such as k-Nearest Neighbors (k-NN), which can ignore a missing
value during the distance calculation phase, or tree-based algorithms like Decision
Trees, Random Forest, and Gradient Boosting Machines [65].

• Techniques like Multiple Imputation by Chained Equations (MICE) use the entire
set of available feature variables to estimate missing values. This can be more
accurate than univariate methods but is computationally more intensive [65].

• Interpolation is the process of approximating missing values using other available
values. Data streams refer to estimating missing attributes or tuples, which can
arise from sensor malfunctions, connection loss, and related problems [4, 65]. Var-
ious methods exist for interpolating data points, such as linear and polynomial
interpolation.

Data cleaning

Managing datasets involves a critical component known as data cleaning. It is not
exclusive to the IoT context and comprises three key phases: identifying error types,
detecting potential errors, and remedying the identified errors. Data cleaning techniques
go beyond the detection of outliers and interpolation, encompassing a diverse range of
activities that guarantee the quality and reliability of data [4, 64]. For example, since
duplicate instances do not contribute significantly to the model creation process, they
are discarded directly.

Non-Numerical Features Encoding

It is necessary to convert the non-numerical features into numerical ones so that machine
learning algorithms can process the data. Label encoding and one-hot encoding are
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methods for handling categorical variables in machine learning [2]. The choice between
them depends on the specific dataset and the ML algorithm. Label encoding is more
straightforward and space-efficient but may introduce an arbitrary order to categorical
values. One-hot encoding avoids this issue by creating binary columns for each category,
but it can lead to high-dimensional data [2].

Normalization vs Standardization

The difference in data distribution between different features can significantly impact
the classification model and feature selection process, in addition to the high computa-
tional resources required for training such a large dataset. The data are usually scaled
using normalization or min-max scaling methods to solve this problem [2, 60]. The
normalization equation is:

z = x − µ

σ
(2.1)

Where:

• z is the normalized value.

• x is the original value.

• µ is the mean of the dataset.

• σ is the standard deviation of the dataset.

This formula adjusts values to have a mean of 0 and a standard deviation of 1, facilitating
specific statistical analyses and training machine learning models.

The formula for min-max scaling is:

x′ = a + (x − min(x))(b − a)
max(x) − min(x) (2.2)

Where:

• x′ is the rescaled value.

• x is the original value.

• min(x) and max(x) are the minimum and maximum values in the dataset, respec-
tively.

• a and b are the new minimum and maximum values after rescaling.
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This formula adjusts the values of the data to a specific range [a, b], commonly to [0, 1]
or [−1, 1], which can help compare measures that have different units or scales.

Data Splitting

The splitting of data involves dividing the initial data into two separate sets. The first
is the training set used to train the model. The second set, known as the test set, is
used to assess the final performance of the trained model. To test the effectiveness of
the trained model, the test data set must maintain a similar distribution of classes as
the training set. This is done to simulate the actual scenario of IIoT networks [2].

Sequences of Data

The sliding window technique in time series analysis transforms a dataset into a format
suitable for machine learning models, especially deep learning. Transforming time series
data from [n-samples, n-features] to [n-samples, timesteps, n-features] is vital for several
reasons [9, 11, 37, 48]:

• Time series problems depend on past observations to predict future values. By
using a windowed format, the model can learn these dependencies. The window
size determines how far back the model can look to make a prediction.

• RNNs, LSTMs, and GRUs are machine learning models for sequential data. They
work by processing input data sequentially, one step at a time, while retaining
hidden states that carry information across these time steps.

• To improve the performance of a model working with multivariate time series,
converting the dataset to include information from all features in each time step
is helpful. This allows the model to learn complex relationships between features
within the same time frame.

• This conversion facilitates both single-step and multi-step forecasting. The win-
dowed approach provides the necessary structure for both strategies.

• During training, the model is exposed to more varied sequences by presenting data
in overlapping windows.

• This technique leverages existing observations to make more efficient use of avail-
able data instead of discarding valuable temporal information, creating a more
extensive set of training samples.
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The size of the window used in anomaly detection is vital. It should be large enough
to capture essential patterns and small enough to avoid diluting the anomalies. There
is no single optimal window size that works for all scenarios. It often involves trying
different sizes and using domain knowledge to balance capturing relevant information
and maintaining computational efficiency [11, 37, 48].

2.3.4 Balancing Data in Time Series

Unbalanced datasets in classification models are a crucial issue significantly affecting
predictive model performance. This occurs when the distribution of classes is not uni-
form, causing bias towards the more frequent class. Building classification models for an
unbalanced dataset requires special consideration for satisfactory performance [38, 68].
Imbalanced datasets can cause machine learning models to favor the majority class, lead-
ing to inadequate performance for the minority class. This is particularly problematic
for applications like anomaly detection and predicting rare events where the minority
class is of greater significance [38, 68, 69].

In multiclass classification, some approaches combat class imbalance: resampling,
classifier adaptation, ensemble strategies, and cost-sensitive techniques. Resampling
adjusts the training data distribution by oversampling the minority class or undersam-
pling the majority class; classifier adaptation modifies the classifier’s decision boundary;
ensemble strategies combine multiple classifiers; and cost-sensitive techniques penalize
misclassification of minority classes more heavily [38, 70]. Other methods include deep
learning algorithms, data augmentation, fairness, and bias mitigation.

Resampling Methods

Resampling methods are widely used to overcome data imbalance issues in machine
learning by processing the dataset to create a more balanced distribution of classes
[57, 69]. These methods usually involve undersampling, which removes instances from
the majority class, oversampling, which involves cases augmenting in the minority class,
or a hybrid approach of both. Additionally, these approaches can be categorized as either
random or heuristic techniques based on adding or removing samples [30, 38, 69]. The
Synthetic Minority Over-sampling Technique (SMOTE) is an advanced method that
creates synthetic samples to force the decision region of the minority class to become
more general [30, 42].

Random resampling techniques can lead to the loss of crucial information or over-
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fitting of data. On the other hand, heuristic methods offer a more refined approach by
selectively removing insignificant instances from the majority class or by creating cases
synthetic for the minority class. These heuristic methods often employ algorithms like
SMOTE to ensure the data’s integrity is maintained or improved [38].

Classifier Adaptation

One strategy to deal with imbalanced datasets is to adapt machine learning models in a
way that they can better understand and learn from the class distribution. This can be
achieved by developing specialized algorithms designed to accommodate the imbalance
in class distributions besides the standard technique of resampling [38].

Ensemble Methods

Ensemble methods are a powerful tool for building highly accurate predictive models
by combining the outputs of multiple base models [69]. While these methods have been
successfully applied to single-class classification tasks, their potential in multiclass clas-
sification lies in their ability to integrate diverse predictions from multiple classifiers
trained on different data segments. This not only enhances overall predictive perfor-
mance but also addresses issues related to class imbalance [38, 69].

Cost-Sensitive Approaches

Cost-sensitive techniques are a popular solution for addressing the issue of class imbal-
ance in multiclass classification settings. These techniques assign varying costs to errors,
emphasizing higher costs for misclassifying minority class instances [57, 69]. By doing
so, the approach seeks to minimize the overall misclassification cost, which can help
achieve a more targeted and effective solution to the imbalance problem [38, 71].

Deep Learning Approaches

With the advent of deep learning, there has been a surge in using intricate neural
network architectures to tackle class imbalance. This involves utilizing autoencoders
to extract features and learn representations to improve the model’s ability to discern
significant patterns in the minority class data. Moreover, cutting-edge loss functions
considering class imbalance during the training phase have been suggested to steer the
model optimization process [71].
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Fairness and Bias Mitigation

As machine learning models can reinforce bias, researchers have been working on de-
veloping fairness-aware algorithms to address class imbalance. The goal is to improve
the model’s performance without sacrificing fairness. These approaches consider both
predictive performance and ethical implications to ensure that the model is unbiased
and produces fair results [72].

Data Augmentation

Data augmentation techniques are advantageous for deep learning models as they prevent
overfitting. One essential method to create efficient synthetic data is to simulate anoma-
lous conditions using a model or simulation process replicating industrial processes under
parameters yet to be experienced in the real world. Reliable and high-fidelity simulation
data can offer low-cost training data and address the problem of insufficient samples
[30].

Data augmentation can be significantly enhanced using Generative Adversarial Net-
works (GANs), particularly in domains where data is limited, expensive to acquire, or
requires more variety than the original dataset. GANs consist of two neural networks,
the generator and the discriminator, that are trained together in a competitive pro-
cess. The generator produces data that is nearly identical to actual data, while the
discriminator distinguishes between real and generated data [30].

2.4 Evaluation and Optimization

A model’s performance is measured on specific tasks during the evaluation phase. Met-
rics such as accuracy, precision, recall, and F1 score are used to assess its performance.
Proper evaluation techniques like cross-validation or splitting data into training and
test sets can help estimate how well a model generalizes to new data. In addition,
hyperparameters can be adjusted to control the learning process, and hyperparameter
optimization (HPO) can help identify the most effective combination.

2.4.1 Metrics

In binary and multiclass classification, evaluation metrics are utilized to measure the dis-
tinct characteristics of the algorithm. These metrics assess the algorithm’s performance
through its accuracy, precision, recall, and F1 score. Precisely, accuracy measures the
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proportion of correctly classified instances, while precision measures the proportion of
true positives among all instances classified as positive. Conversely, recall measures the
proportion of true positives among all actual positive instances, and F1-score is the har-
monic mean of precision and recall [34, 38, 73]. By leveraging these evaluation metrics,
we can gain insights into the strengths and weaknesses of the classification algorithm and
make informed decisions about its suitability for a given task. The evaluation metrics
are designed to assess the generalization capability of the trained classifier, mainly when
tested with previously unseen data [73].

Confusion Matrix

The confusion matrix helps determine the best solution during classification training. It
arranges the predicted and actual classes in rows and columns, respectively. TP and TN
represent the number of correctly classified positive and negative instances, while FP and
FN denote the misclassified negative and positive instances. By analyzing these values
in the confusion matrix, we can determine the most effective solution for classification
training [73, 74].

Actual: Yes Actual: No
Predicted: Yes True Positives (TP) False Positives (FP)
Predicted: No False Negatives (FN) True Negatives (TN)

Accuracy

In machine learning, accuracy is a performance metric that evaluates the ability of
a classifier to predict the correct outcomes of new data. It is calculated by dividing
the number of correct predictions by the total number of predictions made. Accuracy
measures the proportion of correctly classified instances out of all instances tested [38,
73, 74].

Accuracy = True Positives + True Negatives
Total Observations (2.3)

False Positive Rate or False Alarm Rate

The False Positive Rate (FPR) is the proportion of negative instances wrongly classified
as positive. It is used to evaluate the accuracy of binary classification models to ensure
that decisions are based on reliable data [73]. FPR is calculated as follows:

FPR = FP

TN + FP
(2.4)
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where:

• FP represents the number of false positives,

• TN represents the number of true negatives,

• The denominator (TN + FP ) is the total number of actual negatives.

The FPR is a critical measure in evaluating the specificity of a classification model. It
indicates how well the model avoids false alarms.

False Negative Rate

The False Negative Rate (FNR) represents the positive instances that are inaccurately
classified as negative. It is a significant factor in evaluating the accuracy of a model and
is frequently used to fine-tune algorithms and improve outcomes [73]. It is calculated as
follows:

FNR = FN

TP + FN
(2.5)

where:

• FN represents the number of false negatives,

• TP represents the number of true positives,

• The denominator (TP + FN) is the total number of actual positive instances.

The FNR is crucial for understanding the sensitivity of a classification model. It indicates
the model’s effectiveness in identifying positive cases without mistakenly labeling them
negative.

True Positive Rate

The True Positive Rate (TPR), or sensitivity or recall, is the proportion of actual positive
instances the model correctly identifies [38, 39]. It is calculated as follows:

TPR = TP

TP + FN
(2.6)

where:

• TP represents the number of true positives,
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• FN represents the number of false negatives,

• The denominator (TP + FN) is the total number of actual positive instances.

The TPR assesses the model’s effectiveness in identifying positive cases and is particu-
larly critical in scenarios where failing to detect positives is costly.

True Negative Rate

The True Negative Rate (TNR), known as specificity, measures the proportion of actual
negative instances correctly identified by a classification model. It is a crucial metric for
assessing a model’s ability to distinguish negative cases from positive ones, especially
when the cost of misidentifying negatives (as positives) is high [38, 39]. It is calculated
as follows:

TNR = TN

TN + FP
(2.7)

Where:

• TN represents the number of true negatives,

• FP represents the number of false positives,

• The denominator (TN + FP ) is the total number of actual negative instances.

The TNR is critical for evaluating the model’s ability to correctly identify negative cases,
ensuring it can effectively distinguish between negative and positive instances without
causing unnecessary alarms.

Precision

Precision, also known as the positive predictive value, is the proportion of true positives
among all instances classified as positive by the model [34, 38, 74]. It is calculated as
follows:

Precision = TP

TP + FP
(2.8)

Where:

• TP represents the number of true positives,

• FP represents the number of false positives,
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• The denominator (TP +FP ) is the total number of instances classified as positive
by the model.

Precision is crucial for understanding the reliability of a model’s positive classifications,
emphasizing the importance of minimizing false positive rates.

F1-Score

The F1-score is defined as the harmonic mean of precision and recall, offering a balance
between the two when evaluating the accuracy of a binary classification model. It is
particularly useful in scenarios with uneven class distribution [34, 38, 39, 74]. The F1-
score is calculated as follows:

F1 = 2 × Precision × Recall
Precision + Recall (2.9)

Where:

• Precision is the proportion of true positives among all instances classified as posi-
tive,

• Recall (or Sensitivity) is the proportion of true positives identified correctly among
all actual positives,

The F1-score ranges from 0 to 1, where 1 indicates perfect precision and recall, and 0
indicates the worst.

For evaluating multiclass classification models, traditional metrics have to be rede-
fined [34, 38, 39, 74].

1. Accuracy: The proportion of correctly predicted observations to the total obser-
vations. Useful but can be misleading in imbalanced datasets.

2. Precision (Per-Class and Macro/Micro-Averaged): The ratio of correctly
predicted positive observations to the total predicted positives, averaged across
classes.

3. Recall (Per-Class and Macro/Micro-Averaged): The ratio of correctly pre-
dicted positive observations to all observations in actual class, averaged across
classes.

4. F1 Score (Per-Class and Macro/Micro-Averaged): The weighted average of
Precision and Recall, considering both false positives and false negatives.
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5. Confusion Matrix: A table used to describe the performance of a classification
model on a set of test data for which the true values are known.

6. Matthews Correlation Coefficient (MCC): A correlation coefficient between
the observed and predicted binary classifications, providing a balanced measure
that can be used even with very different class sizes.

7. Area Under the ROC Curve (AUC-ROC): The area under the ROC curve
can be extended to multi-class classification through One-vs-All (OvA) schemes.

8. Log Loss (Cross-Entropy Loss): Measures the performance of a classification
model where the prediction input is a probability value between 0 and 1.

The metric selection depends on the particular goals of the classification task and the
dataset’s attributes. Each metric offers a distinct viewpoint on the model’s performance.
Therefore, it is key to opt for a metric that is suitable for the given task [34, 38, 39, 74].
Various classification metrics can be obtained from the confusion matrix to assess and
compare the effectiveness of different machine-learning models [42]. As the evaluation
datasets for anomaly detection are usually unbalanced, most authors use the standard
confusion matrix metrics: true positives (TP), false negatives (FN), false positives (FP),
true negatives (TN) and their derivate metrics, including accuracy, Precision, Recall, F1-
score, Area under curve (AUC), and Area under Precision-Recall (AUPR) to evaluate
the performance of the models [2, 3, 9–11, 13, 35, 37, 40, 47, 50, 52–54, 60, 70]

Some authors utilize certain parameters specific to the environment where the model
is deployed to assess its overall performance. [46] evaluates the suitability of its FL-based
models for resource-constrained environments, such as smart meters, using edge devices’
memory, CPU usage, bandwidth, and power consumption as metrics. [48] evaluated
the performance of their DCT-GAN model using F1-Score and AUROC (Area Under
Receiver Operating Characteristic curve). Moreover, [12] utilizes precision, recall, and
F1-score to evaluate edge computing performance concerning memory usage, GPU and
CPU usage, power consumption, run time, and bandwidth occupation.

Researchers can also choose to create their own metrics. [73] and [75] have identified
several crucial factors to consider when selecting or creating a metric for evaluating
classification models. These factors include:

• Classification Type: The first step is identifying whether the model is intended
for binary or multiclass classification. This differentiation is crucial because it
influences the selection of suitable performance evaluation metrics.
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• Efficiency in Computation: Consider using a simple measurement that requires
little computational power, enabling a fast and efficient evaluation.

• Understandability and Discriminative Power: The metric must distinguish
between varying degrees of model effectiveness to accurately identify successful
models.

• Depth of Performance Insight: It is important to select a metric that provides
a detailed comprehension of the model’s effectiveness, which goes beyond a basic
accuracy measure.

• Attention to Underrepresented Classes: Ensure that the metric used to eval-
uate the model’s performance considers the minority classes, especially when imbal-
anced data distribution. This will promote fairness and accuracy in the evaluation
process.

These criteria will ensure that the metric accurately measures the performance of
classification models while also considering factors such as efficiency and fairness [73, 75].

2.4.2 Hyper Parameter Optimization

Optimization is an important task in anomaly classification. It involves tuning model
parameters, adjusting learning rates, and selecting appropriate algorithms. This process
requires precision, domain knowledge, and practical considerations. Doing so can in-
crease the probability of correctly identifying anomalies, thereby reducing false positives
and negatives. To achieve the best results, it is necessary to train models on available
datasets using optimal parameters [9]. Different combinations of hyperparameters such
as batch size, learning rate, dropout rate, number of epochs, optimizer, number of layers,
and number of nodes are often used to train a model. Setting these hyperparameters
before training the model is crucial, as they can impact the learning speed and model
performance [9]. Hyperparameter optimization techniques range from manual tuning to
automated methods. Commonly used techniques include:

• Grid search explores a subset of hyperparameters by training and evaluating a
model for each possible combination of hyperparameter values defined in a grid.
This brute-force approach systematically goes through all combinations of hyper-
parameter values [76–79].
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• Random search is a technique that picks random combinations of hyperparameters
to train and evaluate a model. This process is repeated for a specified number of
iterations [76, 77].

• A probabilistic model is built by Bayesian optimization to map the function from
hyperparameter values to the objective evaluated on a validation set [76, 77].

• Gradient-based optimization methods adjust hyperparameters in the direction that
reduces the validation loss, based on the gradient of the loss concerning the hyper-
parameters [76–78].

• Mechanisms inspired by biological evolution, such as mutation, crossover, and
selection, are utilized by evolutionary algorithms to evolve a population of hyper-
parameter sets towards better performance [76, 77].

• Hyperband is an approach that uses a bandit mechanism to allocate resources to
a group of hyperparameter configurations. It works by swiftly discarding under-
performing configurations while granting more resources to the ones that show
promise [76–79].

Despite the availability of numerous hyperparameter optimization (HPO) software
packages and GPU resources, manual experimentation remains the most commonly used
approach for optimizing hyperparameters. This approach relies on a researcher’s intu-
ition, domain knowledge, and preliminary explorations, which are usually inexpensive
[76, 78]. A suggestion to bridge the gap between HPO algorithms and Deep Learning
(DL) researchers is PriorBand, an HPO algorithm designed explicitly for DL that en-
ables the integration of expert knowledge and inexpensive proxy tasks. In another study,
[78] suggests that the high cost of time and computing power is a significant obstacle
to the widespread adoption of modern HPO practices. [78] has proposed a two-stage
HPO technique to reduce the computational load of conventional HPO by using a small
subset of the training dataset. The best candidates shortlisted from the first stage are
retrained with the full training dataset for final selection, resulting in final models ready
for deployment.



Chapter 3

State of the Art

The Industrial Internet of Things (IIoT) has brought unprecedented connectivity and
data collection capabilities in manufacturing, energy, and transportation. This surge
in connected devices and sensors has enabled real-time monitoring and optimization of
industrial processes and exposed these systems to many potential anomalies and security
threats [9, 12, 27]. Anomalies in the IIoT context can range from simple system mal-
functions to sophisticated cyberattacks, each with the potential to disrupt operations
and inflict significant damage. Given this backdrop, developing robust anomaly detec-
tion and classification systems becomes paramount to safeguarding the integrity and
functionality of IIoT ecosystems. These systems must distinguish between normal oper-
ations and abnormal behaviors, ensuring timely and appropriate responses to potential
threats.

We have developed a comprehensive review to investigate the advancements in anomaly
classification methodologies within the IIoT realm. This work was originally published
in Elsevier’s Intelligent Systems with Applications in 2023 [14]. We systematically cat-
egorize existing research based on anomaly detection techniques, statistical methods,
traditional machine learning, and advanced deep learning algorithms. Additionally, we
explore the contextual application of these techniques, examining whether the strategies
are context-aware and identifying the computational environments (end devices, edges,
clouds, or local servers) in which these algorithms are deployed. Our analysis highlights
the current research trends, reflecting a growing interest in leveraging deep learning for
anomaly detection on edge devices and underscores the critical role of context-aware
information in enhancing detection accuracy. By providing a structured overview of
anomaly detection strategies and their implementation nuances, this state-of-the-art
aims to inform and inspire future research directions that address the unique challenges
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posed by the IIoT landscape.
We have observed a continuous increase in published papers in recent years, indicating

that this subject has sparked the research community’s interest. We have also examined
the techniques employed by various authors to detect anomalies and have identified
whether they detect anomalies in general or specific types of anomalies such as events,
failures, or attacks. Additionally, we have analyzed the use of contextual information in
implementing anomaly detectors. An overview of the report’s findings is presented in
Figure 3.1, which displays the percentage of papers meeting each classification criterion.
Out of the articles reviewed, only 8% utilized context-aware information. Most of the
reports (56.5%) utilized deep learning methodologies for anomaly detection. Anomaly
detection was intended for edge devices (48.9%), while the anomaly detection system
was implemented primarily on the edge computing (19%) layer. Finally, most papers
(58.5%) do not disclose the location where the algorithms were implemented.
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Figure 3.1: Percentage of papers included in the state-of-the-art review that meet each
classification criterion.

This chapter emphasizes anomaly detection and classification advancements within
the Industrial Internet of Things (IIoT). Here’s a synthesis of the key original contribu-
tions:

• Comprehensive Review of Anomaly Classification Methods: This chapter classifies
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current research based on the methods used for anomaly detection (statistical,
machine learning, deep learning) and the contexts in which they are applied. This
organized categorization helps identify trends and gaps in anomaly classification
within the IIoT, providing a clear overview of the field.

• Advanced Anomaly Detection Strategies: Highlighting advanced strategies like
the use of autoencoders for unsupervised anomaly detection and the integration
of Federated Learning for distributed anomaly detection systems emphasizes the
chapter’s contribution to showcasing cutting-edge methodologies adapted for the
complexities of the IIoT.

• Context-aware Anomaly Detection: The emphasis on using context-aware infor-
mation for enhancing anomaly detection mechanisms underscores an original con-
tribution towards developing more intelligent, situational-aware IIoT systems.

• Identification of Trends and Gaps: The analysis highlights a continuous increase
in publications, reflecting growing interest in the field. It also points out specific
focus areas, such as the predominant use of deep learning methodologies and the
implementation of anomaly detection on edge devices, indicating a trend towards
decentralized computing.

These contributions are significant as this chapter presents a synthesis of current research
trends and methodologies in anomaly detection within IIoT that could inform future
research and application development in this rapidly evolving field.

3.1 Methodology

The review focused on understanding anomaly detection in IIoT and identified available
solutions to classify anomalies as events, failures, or attacks. Also, it was explored how
context-aware information has been used to improve anomaly detection algorithms. To
elaborate on this review, we considered the guidelines for conducting systematic mapping
studies in software engineering by Petersen et al. [80].

We used the guidelines on [80] to outline our review methodology. First, we formu-
lated a set of research questions that align with the primary objective of the review.
Next, we developed a search query based on these questions and applied it to relevant
databases. Then, we filtered the retrieved papers using exclusion criteria to determine
their eligibility. After reviewing the abstracts, we assessed whether the articles were
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related to anomaly detection in IIoT. Finally, we manually removed duplicate submis-
sions by identifying and eliminating duplicate copies of articles from different journal
databases. The data obtained from these steps formed the foundation of our review.
Below, we provide a detailed explanation of each of these steps.

3.1.1 Research Questions

We have defined three research questions for our state-of-the-art analysis as described
to follow,

• RQ1: Which techniques and methods enable detecting and classifying anomalies
in IIoT?

• RQ2: What kind of validation do authors perform for proposed strategies?

• RQ3: How does context information improve anomaly detection in IIoT?

3.1.2 Search Query and Databases

We created the following search query by identifying the main keywords in the research
question:

((“Industrial IoT” OR IIoT OR “Industrial Internet of Things”) AND “anomaly
detect*”)

Then, this query was applied to four relevant databases in the field, such as Springer,
Science Direct, ACM, and IEEE.

3.1.3 Exclusion Criteria

We identified peer-reviewed and available online papers describing techniques or methods
to detect anomalies in IIoT. Still, we excluded surveys, systematic reviews, mapping
studies, editorials, prefaces, interviews, news, correspondences, discussions, comments,
readers’ letters, panel discussions, poster sessions, abstracts, or books.

3.1.4 Classification criteria

Following the defined methodology, we used the research questions to identify the criteria
for extracting information from the retrieved papers, as shown below.
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• Criterion 1: Does the paper detect events, failures, or attacks? This criterion
indicates whether a work detects events, failures, attacks, or combinations. This
information was extracted following the definition of an event, failure, and attack
given in Chapter 2.

• Criterion 2: Does the work use statistical, machine learning, or deep learning
methods to detect anomalies? The reviewed papers are divided into three groups:
those that primarily use statistical methods to detect anomalies, those that use
machine learning techniques, and those that specifically use deep learning.

• Criterion 3: Does the work diagnose anomaly origin as an event, failure, and
attack? This criterion determines whether a strategy differentiates the anomaly’s
origin or not.

• Criterion 4: Does the work use context information? In this review, context infor-
mation is additional data collected from an industrial process for anomaly detec-
tion. This criterion aims to identify whether a work uses this context information
to implement the detection or classification algorithm.

• Criterion 5: Where does the work detect anomalies? in the perception, network,
or application layer? This criterion indicates whether a proposal detects anomalies
occurring at the perception, network, or application layer of the IIoT system.

• Criterion 6: Which device runs the anomaly detection algorithm (node, edge,
cloud, or local server)? Each type of device in the IIoT network has different
constrained resources (e.g., storage, processing, and latency), which limits the
possibility of implementing the model in real time. The following sections show
the results of applying this methodology to the selected reports.

Below are the results of applying this state-of-the-art review methodology to the selected
works.

3.2 Anomaly Detection

Anomaly Detection involves identifying data points or observations that significantly
deviate from the normal behavior of a dataset [10, 12, 13, 33]. There are two types of
intrusion detection systems: signature-based and anomaly-based. Signature-based uses
pattern matching to recognize known intrusion behaviors but has a high false negative
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rate. Anomaly-based needs a lot of network traffic data to detect abnormal behaviors
and can detect new types of attacks, but it has a higher false positive rate [3]. Anomaly
detection is a significant security concern in the Industrial Internet of Things (IIoT)
due to the increased risk of cyberattacks and failures on distributed devices and critical
infrastructure networks [1, 10, 11]. Several proposals have been developed to detect
anomalies in IoT, IIoT, and cyber-physical systems in recent years. The works found
in the review are grouped below according to the techniques used to detect anomalies,
such as statistics, machine learning, and deep learning.

3.2.1 Statistical Techniques

Various statistical methods have been applied to implement anomaly detection systems,
such as phase-aware hidden semi-Markov model [81], discrete wavelet transform [82],
fast Fourier transform [83], swap center metric [84], singular spectrum analysis [85],
time series correlation with Pearson coefficient [86], principal component analysis [87],
Markov chains for discrete time [88, 89], Bayesian dynamic equalization assigning reward
and punishment mechanisms to IoT nodes [90], extended Kalman filter [91], determinis-
tic finite automata [92], Dempster-Shafer’s Theory of Evidence [33, 93], linear dynamic
state space models [94], and null space based on stochastic subspace identification meth-
ods [95].

We reported the information extracted from the selected papers in three Tables with
a similar format (Tables 3.1-3.3). The first column of each table shows the paper’s
reference, and the second column briefly describes the detection strategy. The col-
umn identified as anomaly specifies whether the report detects events, failures, attacks,
or anomalies. The classify column, in turn, indicates whether that research identifies
anomaly sources. Based on the six criteria cited in [14], Table 3.1 summarizes the
scientific papers using statistical methods to detect anomalies. The context-awareness
column records report that use additional information (context information) taken from
a process to detect anomalies, as well as the detection layer column indicates whether
the authors detect anomalies occurring in IIoT devices, networks, or application layers.
Finally, the execute layer column shows where the authors proposed implementing the
algorithm.

It can be seen from Table 3.1 that some authors detect anomalies from different
origins but without classifying the type of anomaly. For example, Garitano et al. [87]
detect (man-in-the-middle) attacks, sensor failures, and communication problems by ex-
amining the contribution of each variable to an abnormal event. However, their proposal
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does not automatically detect the source of the anomaly, limiting the functionality of
generating an alarm for a human operator who diagnoses whether it is a plant event, a
communication event, or an attack. The authors include data from physical and net-
work variables in their detection method, which could be considered context information,
called “metadata.”

Table 3.1: Anomaly detection proposals using statistical methods (‘E’ stands for Events,
‘F’ stands for Failures, and ‘A’ stands for Attacks).

Reference Anomaly detection strategy Anomaly
Classify
(E-F-A)

Context
Aware

Detection
Layer

Execute
Layer

(Yeganeh, 2023) [43] Control Charts modeled by a Poisson distribution Attacks ✗ ✓ Network -
(Chang, 2023) [44] Spatial and Spectral maps Attacks ✗ ✓ Network -

(Mazarbhuiya, 2023) [45] partitioning and agglomerative hierarchical All ✗ ✓ Network -
(Hashmat, 2022) [96] Vulnerability signature formation engine Attacks ✗ ✓ Network -
(Aruquipa, 2022) [97] Bio inspired manufacturing with vibration sensors All ✗ ✗ Perception Device

(Wang, 2022) [98] Correlation between time series through the self-attention mechanism All ✗ ✗ Perception -
(Zhan, 2021) [99] Hierarchical representation for time series anomaly detection All ✗ ✗ Perception -

(De Vita, 2021) [83] Semi-Supervised Bayesian Anomaly Detection Failures ✗ ✗ Perception Edge & Cloud
(Cai, 2021) [81] Content-agnostic payload-based anomaly detector Attacks ✗ ✗ Network -

(Dang, 2021) [82] Discrete Wavelet Transform and Principal Component Analysis All ✗ ✗ Perception Local server
(De Vita, 2020) [100] On board fault prediction by analyzing real time sensor data Failures ✗ ✗ Perception Edge & Cloud
(Gorbenko, 2020) [84] Swap centre metric method Attacks ✗ ✗ Perception -

(Aoudi, 2020) [85] Singular spectrum analysis Attacks ✗ ✗ Perception -
(Li, 2020) [86] Correlation between multivariate time series All ✗ ✗ Perception -

(Garitano, 2019) [87] Monitoring incoming connection patterns on server side Attacks ✗ ✓ Network Local server
(Faisal, 2019) [88] Deep-packet inspection All ✗ ✗ Network -
(Wang, 2020) [101] Dynamic Bayesian equalization Attacks ✗ ✗ Network -
(Bernieri, 2019) [91] Extended Kalman Filter (EKF) Attacks ✗ ✗ Perception Device
(Genge, 2019) [89] Hotelling’s T2 statistics and the univariate cumulative sum All ✗ ✗ Perception -

(Bernieri, 2019) [92] Deterministic Finite Automata Attacks ✗ ✗ Network -
(Enuachescu, 2019) [93] Dempster-Shafer’s “Theory of Evidence” Attacks ✗ ✗ Perception -

(Peng, 2019) [102] Fuzzy theory Events ✗ ✓ Application Edge & Cloud
(Ghaeini, 2018) [94] Linear Dynamical State-space (LDS) Attacks ✗ ✗ Perception Local server
(Zugasti, 2018) [95] Stochastic Subspace Identification Attacks ✗ ✗ Application -

(Madhawa, 2018) [103] Invariants are formulated by experts Attacks ✗ ✗ Perception Device

Ghaeini et al. [94] present an approach to detect anomalies, focusing specifically
on malicious attack detection. On the other hand, Hashmat et al. [96] propose an
automated context-aware anomaly assessment rule-set framework based on vulnerability
signatures. This method uses a cumulative sum of residuals on historical system data to
detect stealthily changing variables. It considers noise patterns in sensors (e.g., sensor
accuracy level or water movement in a tank) as context information for this proposal.

In recent years, the work presented in [43] developed control charts using machine
learning for monitoring communication between nodes modeled by a Poisson distribu-
tion. Chang et al. [44] generated three spectral and spatial maps from an anomaly map:
ADMap, spectral FGMap, and spatial SFMap. These maps provide feedback informa-
tion. Also, [45] proposed an algorithm for detecting anomalies in real-time data with
mixed attributes. The algorithm combines both a partitioning and an agglomerative
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hierarchical approach. It produces clusters, each associated with a fuzzy time interval,
representing the duration of its existence.

3.2.2 Machine Learning

We identified several machine learning methods used to detect anomalies, such as support
vector machine [2, 104–107], k-nearest neighbors [108, 109], decision trees [105, 110, 111],
optimized gradient boosting decision tree [23, 112, 113], isolation forest [114, 115], and
spatial density-based clustering of applications with noise [116].

Table 3.2: Anomaly detection proposals using machine learning methods.

Reference Anomaly detection strategy Anomaly
Classify
(E-F-A)

Context
Aware

Detection
Layer

Execute
Layer

(Li, 2024) [2] Random Forest and KNN ALL ✓ ✗ Network -
(Niu, 2023) [23] Random Forest and gradient boosting Attacks ✓ ✗ Network -

(Ahakonye, 2023) [117] Decision tree and Chi-square for feature selection Attacks ✓* ✗ Network -
(Douiba, 2023) [113] Decision tree and gradient boosting Attacks ✓* ✗ Network Local server
(Yang, 2022) [114] Detect data distribution change in time and train the new model All ✗ ✗ Perception -

(Rousopoulou, 2022) [104] Generic platform for anomaly detection Failures ✗ ✗ Perception Cloud
(Su, 2022) [118] Machine-learning tree-based methods Attacks ✗ ✗ Network -
(Rey, 2022) [119] Autoencoder in federated learning Attacks ✗ ✗ Perception Edge

(Kumar, 2022) [105] Botnet detection using network-edge traffic Attacks ✗ ✗ Network Edge
(Garmaroodi, 2020) [106] Data mining Failures ✗ ✗ Perception Edge

(Cui, 2021) [112] Margin synthetic minority oversampling technique for unbalanced data Attacks ✗ ✗ Network Edge
(Elnour, 2021) [115] data-driven attack detection using Isolation Forest Attacks ✗ ✗ Perception -
(Yang, 2020) [108] Secure vector homomorphic encryption scheme All ✗ ✗ Perception Cloud

(Razzak, 2020) [107] Randomized nonlinear one-class support vector machine All ✗ ✗ Perception -
(Bodo, 2020) [110] Feature selection method based on hierarchical feature ranking All ✗ ✓ Perception -
(He, 2020) [120] Decision triggered data transmission and collection protocol All ✗ ✗ Perception -

(Garg, 2020) [116] Density-Based Spatial Clustering of Applications with Noise (DBSCAN) Attacks ✗ ✗ Network -
(Zhang, 2020) [121] Maximum correlation minimum redundancy feature selection algorithm Attacks ✗ ✗ Network -
(Anton, 2019) [122] Matrix Profiles detect attacks that occur multiple times Attacks ✗ ✗ Network -
(Raposo, 2019) [123] Use on-node metrics available in hardware All ✗ ✓ Perception -
(Raposo, 2018) [124] One Class Support Vector Machine Attacks ✗ ✓ Network Edge

(Shi, 2019) [109] Extract statistical and spectral features Attacks ✗ ✓ Network -
(Ouyang, 2018) [125] Multi-view learning based ensemble learning solution Events ✗ ✗ Perception Cloud

Methods marked with * classify anomalies without identifying the three kinds of anomalies
defined in this review.

Table 3.2 summarizes information extracted from the papers using machine learn-
ing techniques. This table identifies several proposals that detect anomalies of different
natures without diagnosing the origin. Authors in [123] use metrics from a specific micro-
controller brand to detect firmware and hardware anomalies (e.g., buffer overflow attacks,
SPI failures, voltage drops, and high-temperature failures). However, it assumes that
attacks cause all anomalies. In this case, metrics delivered by the microcontroller unit
(e.g., execution time, energy counter, microcontroller unit cycles) could be considered
context information. Bodo et al. [110] used decision trees to determine whether data
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correspond to an anomaly. Although they do not determine the origin of an anomaly,
this strategy could detect whether data are labeled appropriately. The authors use spec-
ifications from detection devices, environmental noise, and available processing resources
to support detecting an anomaly, which could be considered context information.

Another work presented in [109] uses the power consumption of an IoT device to de-
tect anomalies. In this case, a device’s power consumption could be considered context
information. The report in [120], in turn, identifies anomalies by comparing suspicious
data from a specific sensor against data from other sensors recording similar variables.
However, they do not determine whether it is a failure or an attack in the application
context. Moreover, authors in [113, 117] classify the specific type of attack using decision
trees. Niu et al. [23] proposed ADESSA, a model combining semi-supervised learning
with active learning. It manually labels difficult-to-judge unlabeled samples, which con-
tain more new information than other samples. ADESSA also uses active learning to
discover unknown attacks in unlabeled samples, enabling CPS managers to capture novel
attacks. The base classifier used in this work was random forests and gradient-boosted
trees. In contrast, [2] trained decision trees, Random Forest, k-nearest Neighbors, Naive
Bayes, and Multiple Layer Perception models for binary and multiple classification to
determine the effectiveness of two feature reduction methods.

3.2.3 Deep Learning

Neural networks are used in most papers for anomaly detection. The most common
models used are Convolutional Neural Networks (CNN) [126–128], Recurrent Neural
Networks (RNN) [129, 130], bidirectional long and short-term memory (LSTM) [131–
134], variational autoencoders [135–138], CNN-LSTM [139], [140], [141], and Transform-
ers [12, 24, 37, 105, 142, 143].

Table 3.3 presents papers proposing anomaly detection using Deep Learning tech-
niques. Some works use neural networks as multilabel classifier [33, 90, 129, 141, 144–
146]. For example, authors in [33] combine one-dimensional convolution neural networks
and the Dempster–Shafer decision fusion method to detect and classify some specific fail-
ure types, and authors in [146] use a robust multi-cascaded convolutional neural networks
(CNN) classification approach to distinguish between Sybil and DoS attacks. The deep
neural network architecture developed by [141] incorporates inherent convolutional neu-
ral networks, which act as a multi-label classifier to determine the intrusion points of
attacks. The work presented in [147] trains a multi-class fault classification auto-encoder
using sensor measurements collected during faulty operation.
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Table 3.3: Anomaly detection proposals using deep learning methods.
Reference Anomaly detection strategy Anomaly

Classify
(E-F-A)

Context
Aware

Detection
Layer

Execute
Layer

(Priyadarsini,2025) [148] CNN to track the injected attack types Attacks ✗ ✗ Network Edge
(Saheed,2024) [149] Genetic algorithm with attention mechanism All ✗ ✗ Perception -

(He,2024) [150] Deep-learning side-channel analysis Attacks ✗ ✗ Network Edge
(Abudurexiti,2024) [151] Kolmogorov–Arnold Network Attacks ✗ ✗ Perception -

(Fan,2024) [152] Spatio-Temporal Gated Attention Networks All ✗ ✗ Perception -
(Bukhari,2024) [153] Asynchronous federated learning Attacks ✗ ✗ Perception -
(Chang,2024) [154] Generative Adversarial Network Failures ✗ ✗ Network -

(Yu,2024) [155] GRU encoders Attacks ✗ ✗ Network -
(Sankaran,2023) [146] Multi-cascaded CNN classification Attacks ✓* ✗ Network -

(Cavdar,2023) [33] 1D convolution neural networks and the Dempster–Shafer Failures ✓* ✗ Perception -
(Halder,2023) [156] Federated learning with GRU Attacks ✗ ✗ Network Local server
(Kumar,2023) [157] An adaptive transformer model for anomaly detection Attacks ✗ ✗ Network -

(Kim,2023) [37] Stacked Transformer representations and 1D Convolutional network Failures ✗ ✗ Application -
(Ba, 2022) [24] Automated Configuration of Heterogeneous Graph Neural Networks All ✗ ✗ Perception -
(Ba,2022) [158] Transformer-based Graph Convolutional Neural Networks All ✗ ✗ Network -

(Truong,2022) [12] Light-weight federated learning-based anomaly detection All ✗ ✗ Perception Edge
(Hu,2022) [159] Transfer Learning based Trajectory Anomaly Detection All ✗ ✗ Perception Edge
(Pan,2022) [160] Dual masked self-attention mechanism All ✗ ✗ Perception -
(Feng,2022) [161] A full graph autoencoder All ✗ ✗ Perception -
(Nizam,2022) [9] Convolutional neural network and a two-stage LSTM based Autoencoder All ✗ ✗ Perception -

(Mukherjee, 2022) [141] Deep learning models to determine the exact intrusion points in real-time Attacks ✗ ✗ Perception -
(Nedeljkovic, 2022) [126] Method for calculating the hyperparameters of CNN to detect cyber-attacks Attacks ✗ ✗ Network Device

(Weinger, 2022) [162] Data augmentation in federated learning for anomaly detection All ✗ ✗ Perception Edge
(Friha, 2022) [163] Federated learning-based decentralized intrusion detection system Attacks ✗ ✗ Network Edge
(Liu, 2022) [127] DDoS detection with information entropy analysis Attacks ✗ ✗ Network -

(Yang, 2022) [164] One-class broad learning system Attacks ✗ ✗ Network -
(Chen,2021) [142] Learning Graph Structures With Transformer Attacks ✗ ✗ Perception -

(Wangwang,2021) [165] Network Traffic Oriented Malware Detection Attacks ✗ ✗ Network -
(Kozik,2021) [143] A hybrid time window embedding with transformer-based traffic data classification Attacks ✗ ✗ Network -
(Wang,2021) [166] Hierarchical Federated Learning Attacks ✗ ✗ Perception -
(Wang, 2021) [131] Unknown attack Identification using spatial-temporal features Attacks ✗ ✗ Network -
(Huong, 2021) [135] VAE-LSTM model on edge devices Attacks ✗ ✗ Perception Edge
(Kong, 2021) [132] Generative adversarial networks All ✗ ✗ Network -
(Wang, 2021) [166] Federated deep reinforcement Learning Attacks ✗ ✗ Network -
(Khan, 2021) [140] Temporal and spatial features for the classification and explanation attacks Attacks ✗ ✗ Network -

(Ketonen, 2021) [167] Probabilistic Deep Learning All ✗ ✗ Perception -
(Liu, 2020) [168] Attention Mechanism-Based CNN Unit and LSTM Unit All ✗ ✗ Perception Edge

(Savic, 2021) [136] Autoencoder in edge device All ✗ ✗ Perception Edge
(Seo, 2021) [128] Acoustic-Based Anomaly Detection Attacks ✗ ✗ Perception Edge

(Dzaferagic, 2021) [147] Generative Adversarial Networks to generate missing sensor measurements Failures ✗ ✗ Perception -
(Wu, 2021) [169] Graph Neural Networks All ✗ ✗ Perception Edge & Cloud

(Zhou, 2020) [170] LSTM to mitigate dimensional reduction in unbalanced data All ✗ ✗ Network -
(Li, 2020) [171] multi-CNN fusion Attacks ✗ ✗ Network -

(Park, 2020) [129] Setting boundaries based on cosine similarity in network packets All ✗ ✗ Network -
(Wu, 2019) [133] LSTM with Bayesian and Gaussian Processing All ✗ ✗ Perception -
(Li, 2020) [134] Bidirectional long and short-term memory (B-LSTM) Attacks ✗ ✗ Network Local server
(Liu, 2020) [168] On-device collaborative deep anomaly detection Failures ✗ ✗ Perception Edge

(Demertzis, 2020) [172] Blockchained deep learning smart contracts All ✗ ✓ Application Cloud
(De Vita, 2020) [173] DeepAutoencoder and PCA blocks Failures ✗ ✗ Perception Edge & Cloud

(Liu, 2020) [139] Federated Learning to collaboratively train a Deep Anomaly Detection All ✗ ✗ Perception Edge
(Wang, 2020) [130] Recurrent neural networks Failures ✗ ✗ Perception Edge
(Ferrari, 2019) [174] Compare LSTM on edge and cloud Failures ✗ ✗ Perception Edge & Cloud

(Liu, 2019) [175] Gated Recurrent Unit (GRU) and Support Vector Domain Description Attacks ✗ ✗ Network -
(Bernieri, 2019) [137] Variational Autoencoders(VAE) Attacks ✗ ✗ Network -

(Al-Hawawreh, 2019) [138] Variational Auto-Encoder learns the latent structure of system activities Attacks ✗ ✗ Network -
(Krundyshev, 2019) [176] Determining the normal (legitimate) activity of nodes Attacks ✗ ✗ Network -

(Bae, 2018) [177] Autoencoder with invasion scoring Attacks ✗ ✗ Network -
(Al-Hawawreh, 2019) [145] Sparse and denoising autoencoder All ✗ ✗ Network Local server

(Kim, 2018) [178] Squeezed Convolutional Variational AutoEncoder All ✗ ✗ Perception Edge
(Saurav, 2018) [36] Recurrent Neural Networks Recurrent Units (GRU) All ✗ ✗ Network -
(Muna, 2018) [179] Deep Auto-Encoder (DAE) Attacks ✗ ✗ Network Cloud

(Schneider, 2018) [180] Stacked denoising autoencoder Attacks ✗ ✗ Network Edge
(Tandiya, 2018) [181] Frequency-domain data are transformed in 2D image Attacks ✗ ✗ Network Edge

Methods marked with * classify anomalies without identifying the three kinds of anomalies
defined in this review.
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The work presented in [130] uses RNN to detect anomalies and provides insights
into the timestep at which an anomaly occurred. This system assists a human operator,
which, in turn, locates the source of a problem. Whereas authors in [33, 146] classify the
specific type of attack or failure, respectively. Regarding neural network models, some
works use long short-term memory (LSTM) to leverage spatial and temporal correlation
on anomaly detection [133, 134, 174]. Some results use Principal Components Analysis
(PCA) to reduce the dimensions in a dataset before training a neural network [173, 175].
Other papers use auto-encoder networks and only train models with normal operating
data, which avoids dealing with rare anomalous data in an industrial system [178–180].

Working with big data in real-time anomaly detection systems presents several chal-
lenges because of the constrained resources of memory and processing power of edge
devices and the high latency of cloud computing processing. A solution to take advan-
tage of IIoT characteristics is the federated learning technique, which is used for training
and detecting anomalies in a distributed way [166, 168]. In the last years, modified ver-
sions of Transformer and the attention mechanism [49] have gained momentum in the
field of anomaly detection [12, 24, 37, 105, 142, 143], some authors use graph-CNN for
feature selection and transformers for anomaly detection [24, 142, 158], other works use
auto-encoders based on transformers for the same task [12, 98]. In addition, transfer
learning with a variational graph autoencoder is used in a trajectory anomaly detection
strategy [159]. Proposals in this section neither perform automatic classification of the
anomaly origin as an event, attack, or failure nor identify information that could be
considered context information.

Zhang et al. [10] designed an algorithm for detecting anomalies in multivariate time
series. It utilizes a Transformer Block embedded into a Variational Auto Encoder ar-
chitecture. While [37] presents an unsupervised methodology for time-series anomaly
detection utilizing multiple Transformer encoder layers and a decoder with a 1D convo-
lution layer. Ding et al. [13] developed a new approach to enable the Transformer model
to adapt to concept drift by adjusting its learning rate dynamically. This technique is
beneficial because the standard Transformer model assumes that the training and test
data come from the same distribution, which is frequently not the case in real-world sce-
narios. This is especially significant for time-series data, where the data characteristics
can change over time, leading to concept drift problems.

Truong et al. [12] introduced a decentralized architecture for detecting anomalies.
The architecture combines Federated Learning, Autoencoder, Transformer, and Fourier
mixing sublayer techniques. It is lightweight and requires minimal CPU and memory re-
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sources. It also consumes low bandwidth, making it possible to deploy it on edge devices
with limited computing capabilities. In addition, [11] presents TranAD, a transformer-
based model for detecting and diagnosing anomalies. The model uses attention-based
sequence encoders to enable fast inference and account for broader temporal trends in
data.

In its work, Zeng et al. [50] proposed Adformer, a model designed to detect anomalies
in multi-dimensional time series data in IoT applications. The model uses two-stage
adversarial training to improve the transformer’s ability to capture short-term trends in
the time series and amplify the reconstruction error. This makes it easier to distinguish
between normal and abnormal points with greater accuracy. In the research [55], authors
present a solution for detecting anomalies called the Ensemble Denoising Auto-Encoder-
based Dynamic Threshold (EDAE-DT). This approach aims to address the issue of
false alarms by utilizing a denoising task and an ensemble approach. By modeling
normal behavior accurately, the technique sets a time-varying threshold that considers
the variation of normal data.

Jithish et al. [46] describe a smart grid anomaly detection system that uses Federated
Learning (FL) technology. In this model, machine learning models are trained locally
in smart meters. This is done without sharing the data with a central server, ensuring
user privacy. The system downloads a global model from the server to the smart meters
for on-device training. After local training, the local model parameters are sent to the
server to improve the global model. Alternatively, Saez et al. [47] present a federated
learning architecture for training anomaly detectors in large networks of heterogeneous
IoT devices. The system uses the FL framework to train the anomaly detection models
collaboratively between multiple participants without sending each device’s local data.
This approach reduces network overhead and addresses data isolation and privacy con-
cerns.

Autoencoders are unsupervised models commonly used for anomaly detection. They
identify anomalies in the original data by analyzing the differences between the input
and output data [53]. In [33], the Dempster–Shafer decision-fusion method is combined
with one-dimensional convolution neural networks for anomaly decision-making in IIoT.
While [53] proposed an LSTM-based autoencoder with several decoders. Each decoder
handles data from a specific flight phase, such as climbing, cruising, or descending. In the
same way, [48] proposed a Dilated Convolutional Transformer-based GAN (DCT-GAN)
to improve model accuracy and generalization. Multiple Transformer-based generators
were designed and integrated using a weight-based mechanism to ensure compatibility



3.3 Anomaly Classification 49

with various anomalies.
Since the autoencoders are trained with normal data, it is necessary to calculate a

threshold value to detect anomalies. Authors in [55] propose determining a threshold
using residuals. Residuals are obtained by calculating the L1 norm or L2 norm of the
difference between the output and true data. Specifically, if the confidence level is p,
the threshold can be set as the value at which the cumulative distribution function of a
residual becomes (1-p). Ultimately, the system’s condition is monitored by comparing
the residual with the threshold.

3.3 Anomaly Classification

Identifying anomalies is extremely important for industrial systems as it allows operators
to respond appropriately to attacks and failures [182]. It is crucial to distinguish between
anomaly types to take the appropriate action for component reconfiguration, estimate
the extent of propagation in the system, and prevent negative reactions that could
worsen the system’s condition. In industrial systems, it is decisive to minimize response
times to address anomalies in critical infrastructure due to strict real-time requirements.
Therefore, quick and accurate detection and classification of anomalies are vital [16, 26].
In the state of the art, very little research classifies anomalies in IIoT; most research
classifies anomalies in the industrial process and cyber-physical systems (CPS). Some of
those works are described below,

FALCON is a system that detects failures in power distribution systems by identifying
short-circuit faults through significant variations in current and voltage. It can detect
false-data injection and replay attacks [17]. The authors used the IEEE 13 bus feeder
simulator to test the system and a multilayer perceptron as a classifier with optimized
hyperparameters.

Yang et al. [15] proposed a data-driven approach for identifying and distinguishing
between physical faults and cyber-attacks in manufacturing motor drives. The method
involved a simulated dual-motor-drive network within manufacturing systems. It utilized
line current spectra and four data-driven classifiers to detect cyber-attacks, such as data
injection, DoS, eavesdropping, and replay, and physical faults, such as inter-turn short
circuits and bearing faults. The method employed four classifiers, namely, KNN, SVM,
RF, and LR, which conducted a majority vote to generate an alarm if three or more
classifiers detected a fault or an attack.

In its work, Zhang et al. [16] described a methodology that aims to distinguish
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between two types of threats in Cyber-Physical Systems: sensor replay attacks and
sensor bias faults. To achieve this, the method integrates a watermark with adaptive
estimation. A distinct watermark is created for each threat type based on the changes it
causes in the system. The authors validate their approach using a simulation. Liang et al.
[18] address the security challenges of multi-agent systems (MAS) due to physical faults
and cyberattacks. An observer-based distributed attack detection and fault diagnosis
scheme is proposed to minimize communication loss. Each agent has a bank of attack
detectors based on an unknown input observer to detect attacks in communication with
other agents. A fault diagnoser is also designed for each agent, which can be combined
with the attack detectors to make a distributed fault diagnosis. The proposed scheme
is tested on two smart grids with multiple generators to verify its effectiveness and
scalability.

SCADA systems manage and control critical infrastructures such as power plants
and manufacturing systems. In [134], four types of equipment fault scenarios are de-
rived from statistical measures to detect each type of fault and differentiate it from
a replay attack. They created a data-driven methodology using a Kalman filter and
linear-quadratic Gaussian controller and conducted physical experiments on a rotating
machinery testbed to examine its practicality. [183] proposes a methodology to de-
tect and isolate simultaneous cyberattacks and faults in interconnected cyber-physical
systems. It uses two filters on the plant and control sides of the CPS, along with an un-
known input observer-based detector on the plant side. The methodologies can identify
various attacks, including covert, zero dynamics, and replay attacks. Simulations using
the OPAL-RT real-time simulator and 4 Raspberry Pi demonstrate the capabilities of
the methodology on a four-area power network system.

Abu et al. [184] suggest using convolutional neural networks running in a Com-
pute Unified Device Architecture (CUDA) based on Nvidia GPUs (Graphical Processing
Units) to detect and classify cyber-attacks in IoT communication networks NSL-KDD
dataset. Similarly, the authors in [185] described four machine-learning-based decision
tree models, namely AdaBoosted, RUSBoosted, bagged, and their ensemble learning
model for classifying botnet attacks in the NBaIoT2021 dataset. In another study, [186]
utilized AdaBoost machine learning algorithms combined with Decision Trees to classify
some attacks in an IIoT dataset, such as DoS, DDoS, MitM, backdoor, and injection. In
addition, [187] analyzes how feature selection can increase detection accuracy and speed
up the training phase. They test their proposed classification approach on Mirai, DoS,
Scan, MAS (MitM-ARP Spoofing) attacks, and normal operation.
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Authors in [26] propose classifying sensor anomalies into four categories: stealthy
attack, random attack, transient failure, and permanent failure. To do this, it detects
risks, analyzes them, and reconfigures the system if a group of damages exceeds a tol-
erance threshold. However, the solution requires a deep knowledge of the system. The
authors employ machine learning techniques to address this issue stem to detect physi-
cal failures and cyber-attacks in critical infrastructure using a testbed that simulates a
water plant. They investigate how the monitoring modules react to physical and cyber
problems while analyzing cross-effects. Some proposals distinguish between two types
of threats in Cyber-Physical Systems: physical failures and cyberattacks. The authors
in [188] aimed to distinguish between component failures and attacks on a power-aware
communication network in an intelligent home system. They provided a framework and
suggested that a normal state is when all variables are within expected limits with no
failures and attacks. However, if the effects of failures and attacks are similar, distin-
guishing between the two is impossible with the provided framework.

In their work, Atul et al. [22] propose an Energy Aware Smart Home (EASH) frame-
work. The study investigates the types of network attacks and communication failures
that occur in EASH. The authors employ machine learning techniques to address this
issue to distinguish abnormal communication patterns. The authors classify normal
communication patterns and anomalies (failures and attacks). In [32], authors try to dif-
ferentiate between two types of anomalies in an MIoT network - Presence-Hard-Contact
Anomalies and Success-Hard-Content Anomalies, based on the number of transactions.
Two approaches are used - forward and inverse problems. The forward problem aims
to comprehend the impact of anomalies on the nodes. The inverse problem is used to
detect the origin of anomalies by studying their impact on the nodes.

Table 3.4 from our review article [14] presents the papers that detect general anoma-
lies or events, failures, and attacks. Attack detection receives the most attention from
researchers in this field, followed by the detection of general anomalies.

Most works on detecting anomalies systems prioritize malicious attack detection,
with a smaller percentage dedicated to detecting faults. It is essential to analyze and
distinguish the source of anomalies to select the appropriate recovery actions. Automatic
diagnostic functions are necessary to eliminate the need for trained operators [188].
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Table 3.4: Type of detected anomaly.
Events Failures Attacks

(Peng,2019) [102],
(Ouyang,2018) [125]

(Ferrari,2019) [174],
(De Vita,2020) [100],
(Liu,2020) [168],
(De Vita,2020) [173],
(Wang,2020) [130],
(De Vita,2021) [83],
(Garmaroodi,2020) [106],
(Rousopoulou,2022) [104],
(Dzaferagic,2021) [147],
(Kim,2023) [37],
(Cavdar,2023) [33]

(Garitano,2019) [87], (Anton,2019) [122], (Raposo,2018) [124], (Li,2020) [171],
(Liu,2019) [175], (Bernieri,2019) [137], (Wang,2020) [101], (Al-Hawawreh,2019) [138],
(Bernieri,2019) [91], (Krundyshev,2019) [176], (Shi,2019) [109], (Li,2020) [134],
(Bae,2018) [177], (Bernieri,2019) [92], (Gorbenko,2020) [84], (Garg,2020) [116],
(Enuachescu,2019) [93], (Aoudi,2020) [85], (Tandiya,2018) [181], (Wang,2021) [131],
(Huong,2021) [135], (Zhang,2020) [121], (Cui,2021) [112], (Wang,2021) [166],
(Hashmat,2022) [96], (Khan,2021) [140], (Mukherjee,2022) [141], (Elnour,2021) [115],
(Cai,2021) [81], (Nedeljkovic,2022) [126], (Seo,2021) [128], (Weinger,2022) [162],
(Su,2022) [118], (Rey,2022) [119], (Friha,2022) [163], (Kumar,2022) [105]
(Liu,2022) [127], (Yang,2022) [164], (Ghaeini,2018) [94], (Zugasti,2018) [95],
(Muna,2018) [179], (Schneider,2018) [180], (Madhawa2018) [103], (Chen,2021) [142],
(Wangwang,2021) [165], (Kozik,2021) [143], (Kumar,2023) [157], (Wang,2021) [182],
(Douiba,2023) [113], (Halder,2023) [156], (Ahakonye,2023) [117]

General Anomaly
(Raposo,2019) [123], (Yang,2020) [108], (Park,2020) [129], (Razzak,2020) [107], (Faisal,2019) [88], (Wu,2019) [133], (Bodo,2020) [110],
(He,2020) [120], (Demertzis,2020) [172], (Genge,2019) [89], (Al-Hawawreh,2019) [145], (Li,2020) [86], (liu2020) [139], (Kong,2021) [132],
(Zhan,2021) [99], (Aruquipa,2022) [97], (Ketonen,2021) [167], (Yang,2022) [114], (Liu,2020) [168], (Savic,2021) [136], (Wu,2021) [169],
(Dang,2021) [82], (Wang,2022) [98], (Zhou,2020) [170], (Kim,2018) [178], (Saurav,2018) [36], (Ba,2022) [24], (Ba,2022) [158],
(Truong,2022) [12], (Wang,2022) [98], (Hu,2022) [159], (Pan,2022) [160], (Sankaran,2023) [146], (Feng,2022) [161], (Nizam,2022) [9]

3.4 Context Information

Context is a term used to describe any valuable information that provides a fuller un-
derstanding of an entity’s situation. This entity, a machine, location, or object, plays an
important role in the interaction between a user and an application or among applica-
tions. By providing context, the system can better understand the situation and make
informed decisions [63]. This section will reference some works that use information that
could be considered contextual, although the authors do not use that term.

The paper [24] proposes a method that automatically extracts mathematical rela-
tionships and potential features from documents comprising mathematical formulas and
natural language. The derived features are then added to the dataset. The paper also
describes how the extracted information and specific domain knowledge are combined
to create a semantic knowledge graph for modeling purposes. They do not use the term
“context information” but “domain knowledge” and use those derived features directly
in the machine learning model. In [189], the authors propose a new method for cleaning
environmental sensor data that considers contextual information from external sources.
This approach includes integrating geographical and meteorological data into the train-
ing dataset for building statistical models and using this data during the online cleaning
of the environmental data stream. The contextual data is obtained through web ser-
vices [189]. The authors of [24] have employed a Transformer as a learner that operates
from sequence to sequence, allowing the direct integration of domain knowledge into
ML models. This integrates datasets and derived features and aims to scale ML to IoT
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applications by modeling the relationship between the extracted features and response
variables.

MOM (Modeling, Organization, Middleware) is proposed by [63]. Context-aware
systems have three primary components: generic and effective context modeling, effi-
cient context organization, and robust context middleware. The significance of context
is crucial in imbuing information with intelligence. This is because the background, cir-
cumstances, and conditions in which information is presented play a fundamental role in
understanding and interpreting its meaning. Garitano et al. [87] detect attacks, sensor
failures, and communication problems due to a man-in-the-middle attack. It examines
the contribution of each variable to an abnormal event. However, the proposal does not
automatically identify the source of the anomaly. This limits the functionality of gener-
ating an alarm for a human operator. The human operator must then diagnose whether
it is a plant event, a communication event, or an attack. The authors use “metadata”,
which incorporates physical and network variables. This data can be considered context
information.

3.5 Discussion

The Industrial Internet of Things (IIoT) transforms industries through improved con-
nectivity, data gathering, and real-time monitoring capabilities. However, the growing
use of connected devices and sensors makes these systems vulnerable to various irregu-
larities and security risks. This chapter has thoroughly examined the progress made in
anomaly detection and classification techniques in the IIoT field, emphasizing the neces-
sity for reliable systems that can effectively differentiate between normal and abnormal
behaviors.

Our review categorizes anomaly detection techniques into three main groups: sta-
tistical methods, traditional machine learning, and advanced deep learning algorithms.
Each group offers unique strengths and challenges. Statistical techniques use math-
ematical models to identify deviations from normal behavior. Although effective for
detecting simple anomalies, they often struggle with complex or sophisticated threats.
Control charts, wavelet transforms, and Bayesian models are common in this category.
For instance, the work of Garitano et al. (2019) uses metadata to detect sensor failures
and communication issues, demonstrating the potential of statistical methods to incor-
porate contextual information. While machine learning approaches, such as support
vector machines, k-nearest neighbors, and decision trees, have shown promise in detect-
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ing anomalies by learning from historical data. These methods are more adaptable to
varying conditions than statistical methods. For example, Raposo et al. [123] use met-
rics from microcontroller units to detect firmware and hardware anomalies, leveraging
contextual data to enhance detection accuracy. In addition, deep learning algorithms,
including convolutional neural networks, recurrent neural networks, and autoencoders,
offer advanced capabilities for handling large and complex datasets. These methods
are particularly effective in detecting sophisticated cyber-attacks and system failures.
Recent advancements, such as using Transformers and federated learning, highlight the
trend towards decentralized and context-aware anomaly detection. For instance, Truong
et al. [12] introduce a lightweight federated learning-based approach for edge devices,
reflecting the push towards efficient and scalable solutions.

Our analysis reveals several key trends and challenges in IIoT anomaly detection.
First, there is a clear shift towards leveraging deep learning techniques for anomaly
detection, particularly on edge devices. This trend aligns with the growing need for
real-time and on-device processing capabilities in IIoT systems. Second, incorporating
contextual information into anomaly detection algorithms significantly enhances their
accuracy and reliability. However, only a small percentage (8%) of the reviewed papers
utilize context-aware information, indicating a gap in current research. Third, nearly
half (48.9%) of the reviewed papers focus on deploying anomaly detection systems on
edge devices. This reflects the industry’s move towards edge computing to reduce latency
and improve real-time decision-making. Finally, a significant number of the papers only
identify anomalies without classifying their origin, emphasizing the necessity for research
that establishes the groundwork for systems capable of automatically managing various
anomalies.

Based on our review, we identified several promising directions for future research in
IIoT anomaly detection. Future research should focus on developing more sophisticated
methods for incorporating contextual information into anomaly detection algorithms.
This could involve integrating data from various sources, such as environmental sensors,
operational logs, and network traffic. Likewise, with the growing adoption of edge and
fog computing, there is a need for scalable and decentralized anomaly detection systems,
like federated learning, but further exploration is required to optimize their performance
and security. Moreover, the application of advanced deep learning models, such as Trans-
formers and graph neural networks, should be further explored to handle the complexity
and scale of IIoT data. These models can potentially improve the detection of subtle and
sophisticated anomalies. Additionally, there is a need for standardized benchmarks and
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datasets to evaluate and compare the performance of anomaly classification methods.
This would facilitate more rigorous and reproducible research, enabling the identification
of best practices and gaps.

In conclusion, the advancements in anomaly detection and classification within the
IIoT landscape ensure the security and reliability of industrial systems. While significant
progress has been made, particularly with adopting deep learning and edge computing,
challenges remain in enhancing context-awareness and scalability. The insights and
contributions presented in this chapter underscore the importance of developing robust
and intelligent anomaly detection systems that can adapt to the evolving threats and
complexities of the IIoT environment. This chapter has provided a structured overview of
current methodologies for IIoT anomaly classification. It has inspired the work described
in this thesis, where a framework is proposed to classify anomalies in IIoT, executing a
model based on deep learning that incorporates context information on edge devices.



Chapter 4

Framework for Anomaly
Classification

The rapid evolution of the Industrial Internet of Things (IIoT) and its integration with
Cyber-Physical Systems (CPS) have paved the way for the emergence of smart fac-
tories [20]. These advanced manufacturing environments leverage digital technologies
to enhance operational efficiency, productivity, and flexibility [10, 12, 23]. However,
these systems’ complexity and interconnected nature introduce significant challenges
in monitoring and securing industrial processes. Anomalies, from equipment failures
to cyber-attacks, can disrupt operations, cause financial losses, and threaten safety [6–
8, 27]. Thus, there is a critical need for sophisticated anomaly detection and classification
mechanisms tailored to the unique requirements of the IIoT ecosystem within smart fac-
tories. This ensures the smooth operation of manufacturing processes and the safety
and security of the underlying industrial infrastructure.

In response to these challenges, this comprehensive framework delineates a novel
approach to anomaly detection and classification designed for the IIoT landscape. By
integrating specific domain knowledge of the CPS with the data-driven insights provided
by IIoT technologies, the framework aims to enhance the accuracy and efficiency of
anomaly classification. It meticulously outlines methodologies for context feature anal-
ysis, data collection, feature selection, and data processing, culminating in advanced
strategies for balancing data and optimizing anomaly detection models. Emphasizing
the importance of understanding the IIoT architecture and the operational nuances of
the industrial processes it monitors, this framework represents a significant step forward
in operationalizing AI and machine learning technologies for real-world industrial appli-
cations, thus clearing the way for more resilient, intelligent, and self-optimizing smart
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factories. This chapter presents a comprehensive framework for detecting and classifying
anomalies in Industrial Internet of Things (IIoT). Here are the key original contributions
of this chapter:

• Unique Focus on Anomaly Classification within IIoT: Unlike broader research that
might cover fault diagnosis across industrial machines, this framework specifically
targets the classification of anomalies within the IIoT system. It emphasizes the
necessity of understanding the IIoT architecture and the underlying industrial
processes, advocating for a deep integration of specific domain knowledge directly
into machine learning models for IIoT applications.

• Comprehensive Methodology for Context Feature Analysis and Data Collection:
The chapter introduces a methodology for identifying and incorporating context
features and variables that can aid anomaly classification. It also discusses various
data collection strategies, including using public repositories, simulators, histori-
cal data, and testbeds. It highlights the complexity and challenges of gathering
adequate training data for anomaly detection models.

• Techniques for Feature Selection and Data Processing: The framework examines
feature selection techniques, including exploratory data analysis and dimensional-
ity reduction, to enhance model accuracy and efficiency. It also covers the essential
steps of data processing, such as data integration, handling missing values, remov-
ing duplicates, and encoding non-numerical features, ensuring high-quality data
preparation for machine learning applications.

• Strategies for Data Balancing and Anomaly Detection Optimization: Addressing
the common issue of imbalanced datasets in anomaly detection, the framework
presents strategies for data augmentation and resampling methods, including the
application of Synthetic Minority Over-sampling Technique (SMOTE) and Gener-
ative Adversarial Networks (GANs). It also discusses the optimization of anomaly
detection models through careful selection of evaluation metrics and hyperparam-
eter optimization techniques.

• Two-stage Approach to Anomaly Classification: A contribution of the framework
is its two-stage approach to IIoT anomaly classification, which first identifies data
as normal or anomalous before classifying the type of anomaly (failure or attack).
This approach enables a more nuanced understanding and response to anomalies
detected in the IIoT system.
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• Detailed Guidance on Evaluation Metrics and Model Optimization: The frame-
work offers in-depth guidance on selecting appropriate evaluation metrics based on
the classification task and dataset characteristics. It also provides insights into the
optimization process, emphasizing the importance of tuning model parameters and
selecting algorithms to improve classification accuracy and reduce false positives
and negatives.

Overall, this chapter’s original contributions lie in its detailed and systematic approach
to anomaly detection and classification within the IIoT context. It offers innovative
strategies for data collection, feature selection, model optimization, and classification
that can significantly improve the security and efficiency of industrial operations. Fig-
ure 4.1 shows the outline of the proposed framework to classify anomalies in IIoT.
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Figure 4.1: Framework for Anomaly Classification in IIoT. During training (grey arrows),
data is collected from a testbed or dataset or is artificially generated. Features are then
selected, preprocessed, and used to train the anomaly detector, and classes are balanced
before training the classifier. In deployment (blue arrows), data from the CPS and
the IIoT system is processed before feeding the detector. If a sample is labeled as an
anomaly, the classifier is invoked to classify it as a failure or attack. But if there is
ambiguity between the detector and the classifier, an "event" alert is generated for a
human operator to classify the sample.

This chapter explores the proposed framework for anomaly classification in Industrial
Internet of Things. We introduce the smart factory concept, highlighting the integration
of Cyber-Physical Systems (CPS) with IIoT technologies and emphasizing the necessity
of understanding these systems in detail. The chapter then discusses the core compo-
nents of the framework, starting with the CPS and IIoT architecture and explaining their
roles and interactions. Detailed data collection, processing, and feature selection steps
are provided to ensure a robust and comprehensive dataset. The chapter also includes
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sections on balancing data, anomaly detection techniques, and classification strategies,
emphasizing the use of advanced machine learning models. Finally, we discuss the eval-
uation metrics and optimization techniques used to enhance model performance. Each
section is designed to equip practitioners and researchers with the necessary knowledge
and tools to effectively implement and deploy an anomaly classification system in IIoT
settings.

4.1 Smart Factory

In this context, the term smart factory refers to the integration of the cyber-physical
system (CPS) with the Industrial Internet of Things (IIoT) system. The CPS is an auto-
mated industrial process that uses SCADA and programmable logic controllers (PLC).
CPS is the core component of the business [10, 12, 23]. The IIoT system is installed to
monitor the CPS through a cloud platform, optimizing its performance. In this frame-
work, the first activity is to know the CPS and IIoT that already operate in the plant.

4.1.1 Cyber-Physics System

A Cyber-Physical System (CPS) is characterized by the integration between physical
processes and computational (cyber) processes facilitated through the Industrial Internet
of Things (IIoT) technologies [22]. Several research and business solutions propose fault
diagnosis directly in industrial machines. However, this framework offers a way to classify
anomalies in the IIoT system, not the industrial process.

This framework assumes that technical personnel designing the anomaly classifier
for IIoT know how the cyber-physical system (industrial process) works. They possess
expertise or a deep understanding of a particular area [24]. This domain knowledge
includes the concepts, techniques, tools, and vocabulary unique to that domain [25].
For instance, the maintenance team must know how the industrial process works and
the expected ranges of variables and recognize what is normal. Although this framework
focuses on classifying anomalies in IIoT, it is important to know the monitored industrial
process to recognize possible features or context information that help detect anomalies
in IIoT systems. As Figure 4.2 shows, the implementation of the framework begins with
a detailed description of how the CPS operates.
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CPS: General description, how it works
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Figure 4.2: IIoT and CPS description. The first step to implementing the anomaly
classification framework is to know in detail how CPS and IIoT work. Especially infor-
mation flow. The figure lists the technical aspects that should be taken into account in
each of the layers of the IIoT system.

4.1.2 Industrial Internet of Things

Industrial Internet of Things refers to a network comprised of devices and sensors that
are interconnected and are used in various industrial applications [6–9]. This network
is designed to collect and analyze real-time data, which is used to enhance efficiency,
reliability, and decision-making processes. By utilizing advanced technologies like cloud
computing, machine learning, and big data analytics, IIoT can optimize production pro-
cesses, lower operational costs, and improve product quality [9, 12, 27]. Figure 4.2 is just
a sketch to give developers an idea of what IIoT and CPS aspects they should consider;
it is by no means a finished schematic. In this stage, it is expected that the developers of
the anomaly classifier have a good understanding of the IIoT architecture implemented
in the plant. This includes its layers, features, protocols, security, raw data, processed
information, and how the IIoT system interacts with the industrial process. One way to
achieve this is by creating a diagram illustrating the IIoT architecture, depicting infor-
mation flows and the relationship between different parts. That is, transform Figure 4.2
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into the diagram of the specific process of the plant that implements the framework.

4.2 Proposed Framework for Anomaly Classification
in IIoT

This section delves into the intricate realm of Industrial Internet of Things (IIoT)
anomaly classification, presenting a comprehensive framework designed to detect and
categorize anomalies within industrial systems. As the IIoT ecosystem expands, ro-
bust anomaly detection mechanisms become increasingly critical to ensure operational
efficiency, safety, and reliability. Our proposed framework leverages advanced machine
learning algorithms and data analytics techniques to identify deviations from normal
patterns in real-time, enabling preemptive actions and minimizing potential disruptions.
By integrating various data sources and employing sophisticated classification models,
this framework enhances anomaly detection accuracy and provides actionable insights
for timely intervention. Through a detailed exploration of the underlying methodologies
and practical applications, this section aims to equip practitioners and researchers with
the knowledge and tools to implement effective anomaly classification systems in IIoT
environments. The first step is to brainstorm and list the possible failures and attacks
the IIoT system could suffer. These anomalies can be recorded in a table similar to
Table 4.1, where the failures, attacks, and variables (available or not) that could help
detect such anomalies are specified for each layer.

Table 4.1: Failures and Attacks in IIoT. Brainstorm and record here the possible failures
and attacks the IIoT could suffer and the variables that could reflect those anomalies.

Layer Failures Attacks Available
Variables New Variables

Anomalies
by layers:
cloud, edge,
or sensing

Failures that
can occur in
each layer

Attacks that
can occur in
each layer

Available variables
before Anomaly
classification
framework

New variable
needed to detect
failure or attack

Finally, in this section, additional features from IIoT must be identified for anomaly
detection tasks. For instance, internal CPU data from edge devices can facilitate the
detection of failures or attacks. With a good knowledge of the objects in each IIoT layer,
it is possible to establish the information that can be used for anomaly detection and
classification. At this point, there will be enough features to classify anomalies. How-
ever, those that put the system’s security or privacy at risk or are complex or expensive
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to collect should be excluded. In conclusion, IIoT collects data to monitor the CPS
and other variables to detect anomalies in its operation. This additional data may be
obtained from the IIoT or the Cyber-Physical System. It is suggested to record the in-
formation collected in this section in Table 4.2, assessing the availability, confidentiality,
cost, and complexity of collecting each variable.

Table 4.2: Features for Anomaly Classification. Select appropriate variables and evaluate
the cost-benefit associated with using each of them.

Variable Available
(Yes/No)

Confidential
(Yes/No)

Collection
(Easy/Complex)

Collection Cost
(Cheap/Expensive) Anomaly Decision

(Include/Exclude)

Variable
identified
in Table 4.1

Available
variable
or a new
variable

Is it a CPS
confidential
variable
or not

How complex is
its collection

How expensive is
collecting the new
variable

Which anomalies
can be detected
with this variable

Include or exclude
the variable according
to previous columns

4.2.1 Dataset

An anomaly is a value that differs significantly from the rest of the data. These differ-
ences may be caused by various factors, including malicious attacks, sensor malfunctions,
or significant environmental changes [31–33]. This section describes some strategies for
collecting the anomaly dataset to train the detection and classification models.

Anomalies

Every industrial plant and every IIoT system suffers from specific types of anomalies.
Before collecting the dataset to train the anomaly classifier, the failures and attacks that
will be detected must be identified, either because the company has suffered them or
because it is likely to suffer them in the future. When failures are selected, the causes and
their effects on the sensed variables should be considered since the anomaly detector will
react to these effects. Some examples of failures are increases in CPU temperature, slow
response, device disconnection, or an unexpected range of values sent by a miscalibrated
or faulty device.

The security of an IIoT system depends on the implemented communication net-
work security measures. Identification, authorization, and authentication mechanisms
help the system ensure information privacy, integrity, and availability. Among the most
frequent attacks on IIoT networks are denial of service, man-in-the-middle, Eavesdrop-
ping, Malware or Ransomware, social engineering, and zero-day attacks. Before collect-
ing data, it is necessary to determine which attacks and failures the IIoT system needs to
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be protected against. This involves deciding which ones to include in the list and which
ones to exclude. Some may be unlikely, while others may be too complex or expensive
to address. Sometimes, alternative options, such as acquiring a policy, may be more
practical. Table 4.3 is offered to facilitate the selection of faults and attacks. The pros
and cons of including or not each anomaly are weighed.

Table 4.3: Anomalies in IIoT. Weight the cost and benefit of including or excluding each
potential IIoT anomaly.

Anomaly
Probability

(High,
Medium, Low)

Risk
(High,

Medium, Low)
Variables

Training Dataset
Complexity

(Easy/Complex)

Decision
(Include/Exclude)

Each anomaly
identified in
Table 4.1

How likely is it
for this anomaly
to occur?

If this anomaly
occurs, how
harmful is it?

Variables that
could help
detect the
anomaly

Is it easy to collect
data with this
anomaly to train
the model?

Include or exclude
the anomaly
according to
previous columns

Training Data Collection

Autoencoder-type anomaly detectors can be trained on normal data. However, when
algorithms are designed to classify outputs into more than two classes, the training
data must encompass all relevant categories. Acquiring sufficient data samples to train
such classifiers effectively poses a notable challenge. To overcome this issue, a combi-
nation of several strategies for data collection may be necessary. These strategies could
include leveraging existing datasets, generating synthetic data to supplement existing
samples, conducting targeted data collection efforts, and employing data augmentation
techniques. Integrating these approaches makes it possible to assemble a diverse and
comprehensive training dataset, facilitating the accurate training of classifiers for multi-
class anomaly detection tasks. Some options for constructing a dataset with normal and
abnormal data are described below.

• Use datasets available in public repositories. It is a quick and inexpensive option.
However, the included features (variables) and anomalies are unlikely to efficiently
describe the IIoT system to be protected with the classifier.

• Use software to emulate failures and attacks that could occur in the real IIoT.
This option offers the possibility of generating many samples; however, building a
simulation with all the details of the real IIoT may be challenging.

• Use historical data of the process with anomalies. It is possible that there are not
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enough samples with anomalies or that not all the types of anomalies that we want
to classify are found.

• Artificially generate new samples from the available abnormal data. Currently,
techniques such as generative neural networks (Generative Adversarial Networks,
Variational Autoencoders, Restricted Boltzmann Machines) can be trained to gen-
erate artificial data from available data. However, it must be considered that
training these models also requires a large amount of data.

• Simulate anomalies directly in the IIoT system while monitoring the industrial
process. It is the most direct way to collect the data set, but it can be dangerous
to simulate failures and attacks in the IIoT while the process is in production.

• Implement a testbed with devices similar to the real system and simulate failures
and attacks there. It can be a less complex solution than programming a simulator,
and if extra devices are available in the plant, it can also be not expensive.

Combining several of the above alternatives can lead to an optimal solution. Perhaps
some flaws or attacks are challenging to implement in the physical world, and a sim-
ulation is the best option. The best data source is the industrial process and its IIoT
system. However, these data contain few and varied anomalies, so other sources must
be used to collect the data to train the detection and classification models. Another tool
is a testbed that emulates the process, but the devices have a cost that can sometimes
be very high. Artificial data could also be generated, but this requires much actual
data to train the generator. Simulating a process to emulate anomalies is an unlimited
source of data, but the complexity of programming a realistic simulation must be over-
come. Finally, using public datasets is a cheap option, but finding a public dataset that
matches the nature of the process of interest is unrealistic. In any case, the team im-
plementing the framework must weigh the options, prices, and complexity to choose the
most appropriate options. They must also use statistical techniques to validate that the
generated data’s distribution corresponds to the process’s actual data. Use Table 4.4 to
record information related to your data sources: repositories, simulations, data augmen-
tation, testbed, or the actual system. Then, evaluate the best option for your anomaly
classification system.
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Table 4.4: Dataset for Training. Select anomaly data sources to train machine learning
models.

Repository Simulation Data Augmentation Testbed Real System Decision

Datasets available
on public or private
repositories
or historical data

Software to
simulate a similar
IIoT and
apply anomalies

Generative neural
networks or apply
anomalies to
collected
normal data

Implement a testbed
with devices like
on the real system to
simulate anomalies
and collect data

Apply anomalies
directly on the
real IIoT
system.

After considering
pros and cons of the
options in previous
columns, one or more
of them are chosen.

Context Information

Context information is an aspect of any application, particularly in the industrial sector.
In a few words, context awareness means using data from various sources to provide
services that meet a user’s specific requirements and expectations [61]. Here, it is crucial
to identify any variables that might change based on the industrial process and can be
useful in categorizing anomalies in IIoT. For instance, sounds can vary based on the
frequency of the motor being monitored. In such situations, it may be necessary to
include the industrial process variables as contextual information to detect anomalies.
This contextual information can be added directly to the dataset or transformed through
mathematical operations alone or in conjunction with IIoT variables. Table 4.5 can
record possible context variables from CPS, environmental, commercial, production, or
artificially created data.

Table 4.5: Context Information. Additional data from the CPS can improve anomaly
classification.

CPS External Data Artificial Features Decision

Variables from
CPS to help
anomaly
detection

Environmental
and production
data, maintenance
scheduling

New features created
from equations and
available data

Choose some
variables that
could be used
as context
information

4.2.2 Data Processing

The success of IIoT relies on accurate data from smart devices globally. Poor data
quality can lead to incorrect decisions and declining user engagement. So, maintaining
high data quality standards is essential for the widespread adoption and acceptance of
IIoT services [4, 5]. Data processing transforms unstructured data into a structured
format suitable for analysis. It ensures data quality, consistency, and error-free analysis,
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making it ideal for machine learning-based classification models [2]. Data processing
involves feature elimination, handling missing values, removing duplicates, encoding
non-numerical features, and normalizing the data [2]. Figure 4.3 illustrates the sequence
of tasks that could be executed within data processing before using them to train the
anomaly detection and classification models.

Data Processing

Data Exploration
Visual exploration , trends,
Descriptive statistics, outliers.

Data Integration

Missing Data

Handling Outliers

Feature Transformation

Standardization

Non-Numerical Encoding

Data Sequencing

Join multiple data sources, 
synchronize samples: resampling

Interpolation, imputation, assign 
a unique value, delete rows.

Eliminate, replace with other 
value, do nothing.

transform to a normal 
distribution, eliminate trends

Normalization (mean & std), 
min-max scaling

One hot encoding, label
encoding

Use (samples, features) or
(samples, times, features)

Data Splitting Training and testing dataset

Figure 4.3: Data Processing. Tasks to prepare data for training classifier and detector
models.

Exploratory Data Analysis

It is a key step to perform an exploratory analysis at the beginning. This critical step
involves using various statistical graphs and visualization techniques to carefully examine
the dataset and identify any patterns, anomalies, or features that may be present. By
doing so, the researchers can test their hypotheses and verify any assumptions they may
have made about the data [46]. It is advisable to document all these findings to be used
in the later stages of implementing the anomaly classification framework.
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Data Integration

The Industrial Internet of Things (IIoT) relies on data from various smart devices.
However, this data can be inconsistent and have structural discrepancies that must
be addressed to provide seamless services. The primary objective of data integration
solutions is to connect various data streams and fix any presentation inconsistencies
that may occur [4, 64]. The first challenge in this phase is to synchronize variables
collected independently and with different sampling rates. The question is how to merge
these sequences into the same dataset: you should undersample the signals with a higher
sample rate or oversample the signals with a lower sample rate. Alternatively, you should
choose a middle point between these options. Programming languages such as Python
and libraries like Pandas can automate the integration of all selected variables into a
single dataset.

Missing Data

Missing values in datasets can create information gaps, which can harm our ability to un-
derstand a particular entity or phenomenon. This can result in incomplete knowledge or
incorrect decision-making. Since these datasets are vital inputs in knowledge derivation
processes, missing values can significantly reduce the overall data quality [4, 64].

If there are any missing values in a time series, they can be replaced with values
within the device’s detection range. There are a few methods to do this. One way is to
interpolate between the neighboring data points, and another is to replicate data from
the same set at the positions where data is missing. However, it is necessary to note
that either method can introduce noise into the data set, making it more challenging for
algorithms to learn from it [57]. It is important to differentiate between missing data
due to system anomalies and missing data due to delays in data transmission, which can
be considered normal for IIoT communication protocols.

Duplicate Removal

While building a model, it is essential to carefully select and process the data to en-
sure accuracy and effectiveness. One important step in this process is identifying and
discarding duplicate instances in the dataset. These duplicates do not add significant
value to the model and can often lead to biases and inaccuracies in the final results.
The model can focus on the most relevant and informative data points by removing
duplicates, leading to better performance and more accurate predictions. Therefore, it
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is crucial to identify and discard duplicate instances during the data preparation phase
of building a model [2].

Handling Outliers

Data set management involves a critical component called data cleansing, encompassing
many activities that ensure data quality and reliability. One of these tasks is identifying
and managing outliers, which are values that fall outside the expected range within
the context in which they were collected. The specific domain of knowledge is crucial in
deciding whether an outlier should be eliminated, replaced with another value, or remain
unchanged within the data set. A systematic procedure for removing outliers should be
followed to ensure the ability of models to detect actual anomalies. In the technical
literature, several options, such as clustering, machine learning, or statistics techniques,
are offered to detect and replace values that should not be outside the expected range.
Notably, cleaning outliers can only be performed on the training set. In contrast, the
evaluation sets must remain unchanged regarding outliers to reflect the reality of the
described process [4, 64].

Feature Transformation

Sometimes, some of the original data must be modified to meet specific analytical or
modeling needs. The process aims to eliminate trends that have nothing to do with the
study case, improve normality and linear relationships, handle outliers and interpretabil-
ity, meet model assumptions, deal with zero-inflated data, facilitate convergence, and
ensure positive values. It is important to note that the choice of transformation should
be guided by the data’s specific characteristics and the analysis’s objectives.

Normalization and Min-Max Scaling

During the data processing, the dataset is normalized through data standardization to
eliminate the influence of some features due to different dimensions [50]. When decid-
ing whether to use normalization or min-max for scaling data, various factors should
be taken into consideration, such as the characteristics of the dataset, data type, and
model requirements [11, 12, 37]. On the one hand, normalization is used when assuming
a Gaussian distribution, dealing with features at different scales, and algorithms sen-
sitive to variance. On the other hand, min-max scaling is used with data bound to a
range, algorithms requiring non-negative features, and ease of interpretation [12, 37].
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Normalization adjusts values to have a mean of 0 and a standard deviation of 1, fa-
cilitating certain statistical analyses and training machine learning models. Min-max
scaling adjusts the values of the data to a specific range [a, b], commonly to [0, 1] or
[−1, 1], which can help compare measures that have different units or scales [12, 37].

Non-Numerical Features Encoding

To make it possible for the reduction and machine learning algorithms to process the
data, it becomes necessary to convert non-numerical features into numerical ones. Ma-
chine learning can handle categorical variables using label encoding and one-hot encoding
methods. The choice between these methods depends on the specific dataset and the
machine learning algorithm. While label encoding is simpler and more space-efficient,
it may introduce an arbitrary order to categorical values. One-hot encoding avoids this
issue by creating binary columns for each category, but it can lead to high-dimensional
data [2].

Data Sequencing

The sliding window technique in time series analysis transforms a dataset into a format
suitable for machine learning models, especially deep learning [11, 37, 48]. Transform-
ing time series data from [n-samples, n-features] to [n-samples, timesteps, n-features] is
crucial for several reasons explained in Chapter 2, such as improved learning dynamics,
efficient data utilization, flexible forecasting, feature utilization, model input require-
ments, and temporal dependency capture [9, 48]. Choosing the right window size for
anomaly detection is crucial. It should be large enough to capture patterns but not too
large to dilute anomalies. No universal solution exists, so experimentation is necessary
to balance relevance and computational efficiency [11, 37].

Data Splitting

When working with IIoT networks, splitting the initial data into two sets is important.
This process is called data splitting. The first set is the training set used to teach
the model. The second set is called the test set, and it is used to evaluate the final
performance of the trained model. To get an accurate assessment of the trained model’s
effectiveness, it is crucial for the test data set to maintain a similar distribution of classes
as the training set. By doing this, you can replicate the actual scenario of IIoT networks
[2].
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4.2.3 Feature Selection

Unnecessary features present in data lead to computational complexity and significantly
decrease the precision and effectiveness of classification techniques [2, 56]. Several tech-
niques and criteria can be used to select the variables or features that should remain in
the dataset. Among the most important are:

• Understanding the problem domain helps identify the variables in the dataset and
the variables that should be discarded because they vary with other variables that
are not included or related to the study case.

• Exploratory data analysis for understanding the nature of variables, recognizing
relevant patterns, variable distribution analysis, identification of outliers, discovery
of hidden patterns, and nonlinear relationships.

• Dimensionality reduction techniques can be split into feature extraction and fea-
ture selection. Feature extraction reduces data dimensionality by projecting orig-
inal features into a new low-dimensional feature space [2, 56]. Feature selection
aims to choose a smaller set of features that can predict class labels more effec-
tively and has a lower dimensionality than the original feature space. Moreover,
one must consider whether the data are time series and the method is designed to
work with them.

• Raw data sets often contain multiple correlated features. Including all these fea-
tures in a learning model can significantly increase the computational burden,
leading to long training times [12]. To avoid this, feature selection is performed by
analyzing the correlation between the features through mutual information, Pear-
son, spearman, and others. Then, you should remove highly correlated features
and discard those with zero variance.

• Automatic variable selection through recursive feature elimination, using deci-
sion tree models, or regularization-based methods such as LASSO or Ridge. It
is also helpful to evaluate the model’s performance with different variables (Cross-
validation) or create new features from those available.

Generally, the best option is to combine several techniques mentioned above to decrease
the number of features that describe an object, making it easier to understand anoma-
lies. Consider creating a table like Table 4.6 to track variables that could be removed
from your dataset. It is recommended that anomaly detector and classifier models be



4.2 Proposed Framework for Anomaly Classification in IIoT 71

trained both with and without these variables to ensure that removing them improves
the performance of the models.

Table 4.6: Feature Selection. Apply a combination of techniques to select features in
the dataset.

Exploratory
Analysis

Specific Domain
Knowledge

Statistic
Analysis

Dimensionality
Reduction Techs

Recursive Feature
Elimination Decision

Recognizing
relevant
patterns

Identify variables
not related to the
study case

Mutual information,
Pearson, Spearman,
Lasso, Ridge,
elastic nets.

Feature extraction
and feature
selection

Evaluate the model’s
performance with
different variables

Choose the set
of variables after
trying the strategies
suggested in each
column.

4.2.4 Data Balancing

When datasets are unbalanced, machine learning models may exhibit a bias towards the
majority class, which can result in no optimal performance for the minority class. This
can be especially challenging for applications such as anomaly detection and predicting
rare events, where the minority class holds greater significance [38, 68, 69]. In multiclass
classification, methods to address class unbalance include resampling, classifier adapta-
tion, ensemble strategies, and cost-sensitive techniques [38, 70]. An explanation of each
technique is found in the chapter 2.

A way to deal with a scarcity of available data is to generate synthetic data using a
generative model based on the initial dataset. This process is called data augmentation,
which involves using human-labeled data to produce new data points similar to the
original ones [30, 42]. Resampling methods directly answer the unbalanced challenge
among the spectrum of augmentation strategies. The Synthetic Minority Over-sampling
Technique (SMOTE) generates synthetic samples to broaden the decision region of the
minority class [30, 42, 57, 69].

While resampling adjusts the balance between classes, simulation-based augmenta-
tion further enriches the model’s training environment, simulating conditions unseen in
the real world to prepare models for a broader set of challenges. On the one hand,
simulating anomalous conditions through reliable and high-fidelity simulation data can
offer low-cost training data and address the problem of insufficient samples [30, 42]. On
the other hand, GANs are Generative Adversarial Networks used for data augmentation
in domains where data is limited or expensive. They consist of a generator and a dis-
criminator that are trained together. The generator produces data similar to real data,
while the discriminator distinguishes between real and generated data [30, 42].
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The technique or combination of techniques you choose to balance the number of
samples in each class will depend on the nature of the data and the resources available to
expand the samples in the minority classes. If you have a two-stage classifier, where the
first is trained only with normal data and the second with balanced data, subsampling
the majority class may be the most advantageous solution without losing the model’s
generalization. Table 4.7 summarizes the aspects to be weighed to decide the techniques
used to balance the dataset.

Table 4.7: Data Balancing. Choose between undersampling or oversampling to balance
classes or adjust models for unbalanced datasets.

Resampling Data Augmentation Adapted Models Decision
Undersampling
majority class or
oversampling
minority class
or boths

Create new samples
for minority class:
by collecting or
artificially

Adapt machine
learning models to
work with unbalanced
datasets.

Choose one
or more options
from previous
columns

4.2.5 Anomaly Detection

Anomaly detection (AD) in IIoT is a process that identifies patterns in time-series data
that deviate from the system’s normal behavior [9]. AD should focus on detecting, isolat-
ing, and recovering from attacks, identifying service vulnerabilities, addressing transmis-
sion problems between nodes, and controlling packet growth to prevent service breaches
[22]. Chapter 2 describes some techniques for anomaly detection.

An approach suggested in this framework is to employ an unsupervised method
for spotting anomalies, in which the model is trained only with normal data. This
technique facilitates the identification of previously unknown anomalies. Autoencoders
are an example of this approach. They consist of an encoder and a decoder, which
compress input data and regenerate it from the latent space representation, respectively
[9, 53]. When using an unsupervised model to detect anomalies, the absence of labels is
made up for by setting a threshold value that distinguishes normal data from anomalies.
This is done by assigning a score, which is then used to determine if the data is normal
or an anomaly. Various techniques are employed to calculate the optimal threshold
value, balancing sensitivity and specificity [53, 54]. Common approaches such as fixed
threshold, mean plus standard deviation, iterative method, and Dynamic Thresholding
were explained in Chapter 2.
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4.2.6 Anomaly Classification

This framework proposes a two-stage approach to anomaly classification. In the first
stage, a detector differentiates between normal data and anomalies. The second stage is
triggered if the samples exceed the threshold value to classify the anomaly. The classifier
is designed to identify normal data and various failures and attacks. It provides one of
three labels as output: normal, fault, or attack. However, when it is used to predict,
it only receives data sequences classified as anomalies by the detector. Therefore, if
the classifier identifies one of these sequences as normal, the application generates an
event alert. This alert will help the human operator manually verify the alert’s origin.
Although the framework does not integrate it, sequences labeled Failure or Attack could
pass through a new classifier that specifically indicates what type of failure or attack
they are.

Metrics

In binary and multiclass classification, we use evaluation metrics to measure various
characteristics of an algorithm’s performance. These metrics allow us to assess the algo-
rithm’s accuracy, precision, recall, F1 score, and the Receiver Operating Characteristic
(ROC) Curve and Area Under the ROC Curve (AUC-ROC) [34, 38, 73]. You can find a
detailed explanation and equations for each evaluation metric in Chapter 2. These met-
rics are useful in obtaining valuable information about the capabilities and limitations
of the classification algorithm, which can help determine its suitability for a particular
task.

The metric you select depends on the classification task’s objectives and the dataset’s
characteristics. Metrics should be chosen taking into account classification type, ef-
ficiency in computation, understandability and discriminative power, depth of perfor-
mance insight, and attention to underrepresented classes [34, 38, 39, 74]. The evalua-
tion metrics are designed to assess the generalization capability of the trained classifier,
mainly when tested with previously unseen data. To optimize the anomaly detector and
classifier, the selected metrics must be calculated for each model separately and for both
working together. Accuracy is not recommended if unbalanced data sets are used since
this metric favors the majority class. Instead, precision, recall, F1-score, or AUC-ROC
are suggested.



74 Framework for Anomaly Classification

Hyperparameter Optimization

Optimization is an important task in anomaly classification. It involves tuning model
parameters, adjusting learning rates, and selecting appropriate algorithms. This pro-
cess requires precision, domain knowledge, and practical considerations. Doing so can
increase the probability of correctly identifying anomalies, thereby reducing false posi-
tives and negatives. Selecting the appropriate hyperparameter optimization technique
depends on several factors, such as the particular problem, the computational resources
available, and the kinds of hyperparameters involved. Although grid search and random
search are simple to execute, approaches like Bayesian optimization, evolutionary algo-
rithms, and Hyperband offer more advanced and perhaps more effective ways to explore
the hyperparameter space [77–79].

4.2.7 Alarms

The anomaly classifier alerts the system operator in case of normal operation, failures,
or attacks. The purpose of classifying anomalies is to inform the relevant staff. The
maintenance department handles device failures, while the IT staff handles malicious
attacks. If the classifier labels an anomaly as normal, the system generates an event
alert, and the system operators will manually reclassify it as normal, attack, or failure.
The sequences that arrive at the classifier should be included in the dataset to retrain
the model and improve its performance.

This chapter comprehensively outlines the framework for anomaly classification in
the Industrial Internet of Things (IIoT), focusing on integrating Cyber-Physical Systems
(CPS) with IIoT technologies to create a smart factory environment. Key aspects dis-
cussed include the importance of understanding the CPS and IIoT architecture, which
forms the foundation for effective anomaly detection. The chapter identifies potential
failures and attacks, emphasizing the need for feature selection to enhance detection ac-
curacy. Data collection and processing are highlighted as crucial steps, with techniques
for handling missing data, duplicates, outliers, and data scaling thoroughly explored.
The importance of balancing datasets is addressed alongside advanced machine-learning
models for anomaly detection and classification. Evaluation metrics and optimization
techniques are discussed to ensure robust model performance. The chapter concludes
with practical insights into generating alarms and integrating the framework into real-
world industrial settings, providing a holistic approach to enhancing operational effi-
ciency, safety, and reliability in IIoT environments.



Chapter 5

Framework Implementation Results

This chapter delves into the practical implementation and evaluation of the IIoT Anomaly
Classifier Framework within a testbed environment. Our experimentation involved an
emulated Cyber-Physical System (CPS) represented by a four-belt conveyor system and
monitored by an Industrial Internet of Things (IIoT) system through a cloud platform.
This setup was chosen to simulate real-world industrial conditions closely and rigorously
test the framework’s capability to detect and classify anomalies. The novel contributions
of this chapter are multi-faceted, emphasizing enhancements in anomaly classification
within Industrial Internet of Things systems:

• Innovative implementation for anomaly classifier framework. We implemented
a new framework designed to identify and classify anomalies in IIoT systems,
leveraging real-time data and advanced analytics.

• Integration of detection and classification models for improving anomaly resolu-
tion. This dual-model approach is designed to refine the accuracy and efficiency
of identifying and classifying anomalies in IIoT systems.

• Enhancing anomaly classification through rigorous data processing. By carefully
preprocessing data, the framework improves the classification model’s overall per-
formance, making it better at identifying and categorizing anomalies in IIoT sys-
tems.

• Practical implementation of context information to improve the anomaly classifi-
cation system. By integrating contextual data, such as the operational states of
the cyber-physical systems, the classifier can make more informed decisions about
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the nature of the anomalies detected. This contextual awareness allows the system
to differentiate between anomalies from failures or cyber-attacks.

• Emulated testbed for realistic validation. This chapter details constructing and
utilizing an emulated testbed that simulates an operational industrial environment.
This setup is critical in validating the efficacy of the Anomaly Classifier Framework
under realistic conditions.

• Comprehensive evaluation using real-world scenarios. Our experiments reflect real-
world scenarios, ensuring the findings apply to industrial operations. The frame-
work’s performance is evaluated across various simulated conditions to assess its
robustness and reliability.

• Integration of IIoT with deep learning models. We examine the successful com-
bination of IIoT technologies with deep learning methods to improve monitoring
and anomaly detection, representing a significant advance in machine learning for
anomaly classification in IIoT.

The results of these contributions are discussed in detail below, providing valuable in-
sights into the framework’s practical applications and its potential to improve operational
safety and efficiency in industrial environments. This chapter is structured to present the
implementation results of the proposed IIoT anomaly classification framework clearly
and comprehensively. We begin with an introduction to the experimental setup, detail-
ing the configuration of the testbed, which includes an emulated Cyber-Physical System
(CPS) and an Industrial Internet of Things (IIoT) system. Following this, we delve
into the specific results of the framework’s performance, analyzing key metrics such as
detection accuracy, false positive rates, and computational efficiency. Each subsection
within this analysis highlights different components and stages of the implementation,
including data preprocessing, model training, and validation processes. Comparative
analyses are provided to benchmark the proposed framework against existing anomaly
detection methods, demonstrating its relative advantages and areas for improvement.
The chapter also includes practical case studies and real-world scenarios to illustrate
the framework’s effectiveness in operational settings. We conclude with a synthesis of
the findings, discussing their implications, potential improvements, and suggestions for
future research to enhance further the robustness and applicability of the framework in
diverse industrial contexts.
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5.1 Smart Factory

To test the effectiveness of the Anomaly Classifier Framework and following the recom-
mendation given in Table 4.4 of Chapter 4 "Framework for Anomaly Classification," a
testbed was set up with an emulated Cyber-Physical System (CPS) and an Industrial
Internet of Things (IIoT) system. The CPS used in the testbed was a four-belt con-
veyor system created to emulate real-life scenarios. The IIoT system monitored the CPS
through a cloud platform, allowing real-time data analysis and reporting. Testing the
Anomaly Classifier Framework in this way lets us assess its ability to detect anomalies
in a real-world industrial setting.

5.1.1 Cyber-Physics System

A cyber-physical system composed of four conveyor belts has been emulated to imple-
ment the anomaly classification framework. Figure 5.1 shows their distribution in the
industrial plant. Depending on the product transported, the system follows one of three
recipes: in the first one, only motors in conveyor belts A and B are activated, and their
respective drivers generate speeds proportional to 40Hz, while the second recipe ener-
gizes motors in conveyor belts A, B, and C at 50Hz and the third recipe powers the four
ones at 60Hz. The change of recipe or the shutdown of all motors is controlled from a
graphical interface (Human Machine Interface, HMI).
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Recipe AC: motor1 – motor2 – motor3, speed: 50Hz 
Recipe AD: motor1 – motor2 – motor3 – motor4, speed: 60Hz
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Figure 5.1: Emulated CPS to evaluate Anomaly Classification Framework. Three recipes
control four 3-phase AC motors from an HMI.

Four testbeds have been used to emulate the conveyor belt system; Figure 5.2 shows
one of them. Each comprises an AC motor, a speed controller, an S7-300 programmable
logic controller (PLC), and a Human Machine Interface ( HMI). The four testbeds are
connected through an Ethernet network implementing Profinet protocol.

Figure 5.3 shows a diagram of the electromechanical devices involved in the CPS.
A PLC controls each motor through a speed controller. All of them are interconnected
by a Profinet network and communicate with a supervision system and an HMI. From
this screen, the different recipes are activated, and the main operating parameters of the
system are displayed.

5.1.2 IIoT

An IIoT Industrial Internet of Things system has been implemented to monitor the
CPS from a cloud application. In Figure 5.4, the CPS described in the previous section
is represented only with four motors and an HMI. IIoT comprises four Raspberries PI
3B, acting as edge devices, several low-cost sensors on each motor to record sound and
vibrations, and sensors near two edges to record the humidity and temperature in the
plant. Each sensor communicates with an ESP32 microcontroller, which is responsible
for collecting measurements and sending them to its respective edge device through
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Figure 5.2: Testbed used for emulating the CPS. It is composed of a three-phase motor,
speed driver, S7-300 PLC, and Delta HMI.

MQTT (Message Queuing Telemetry Transport) protocol. Additionally, an edge device
communicates via MODBUS RTU with the HMI to obtain information about the motors.
On each edge device, data is processed locally before being sent to a monitoring and
control application deployed in the AWS cloud. This IIoT system will also collect data
to detect and classify anomalies while monitoring the CPS.

5.2 Dataset

The CPS-IIoT suite was described in the previous section, where three failures and two
cyber attacks were simulated. Data from the motors, internal data from each edge device,
and current consumption were collected. The details of this procedure are described
below.

5.2.1 Anomaly Generation

In this framework implementation, we tried to differentiate between failures and attacks.
The following describes the failures and attacks executed on the testbed.



80 Framework Implementation Results

SCADA

PLC

Speed
Driver

3-Phase
Motor

CYBER-PHYSICAL SYSTEM: INDUSTRIAL PROCESS

Industrial 
Ethernet 

Switch

Figure 5.3: Electromechanical devices involved in the CPS. Three-phase motors are
controlled and monitored through speed drivers connected to PLCs and an HMI.

• High-temperature failure (F1) was simulated by turning off the fan that cools the
edge device. A 24-watt AC fan was placed 20 centimeters above the Raspberry
Pi. Every time an anomaly was generated on the respective edge device, a digital
signal was manually activated to tag that data with the specific type of anomaly.

• Miscalibrated Sensor (F2). To simulate the miscalibration of the motor sound
sensor, the actual measurement value was increased by 20%. This was done in the
collected data, as miscalibration was not directly simulated on the sensor. This
failure can last for several minutes.

• Sensor disconnected (F3). A sound sensor disconnection fault was added, turning
off the sensor and its respective ESP32. The dataset reflects this failure as zero
values in the respective feature. This failure is not used during training but to
evaluate the model with previously unseen anomalies.

• A data injection attack (A1) was executed by spoofing the ESP32 connected to the
motor sound sensors on each edge device. For this, a Python script was executed
from a laptop connected to the IIoT network. The script listened to the MQTT
channel and stole identification data from each end device, then used this data to
spoof the microcontroller and send the MQTT broker random data between 0 and
the average value of the motor’s sound signal. The communication channel used is
Wi-Fi, between the sensors and the edge device and between the edge device and
the cloud application.
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Figure 5.4: An IIoT three-layer (perception, network, application) model is used for
anomaly classification. CPS is represented here with four three-phase motors and an
HMI.

• Denial of Service (DoS) attack (A2) was launched on the MQTT brokers run-
ning on all edge devices. A Python script on a laptop connected to the local
network subscribed 1024 clients to the topic "#." It published short messages to
the Mosquitto MQTT broker every second, thus saturating the communication
channel. As in the previous case, the channel used is Wi-Fi

As mentioned, a digital signal was activated each time an anomaly was generated on
the Raspberry PI. Thus, the sensor measurements and the CPS data were stored with
the respective timestamps and labels that identified the anomaly as failure (‘F1’, ‘F2’
or ‘F3’), attack (‘A1’ or ‘A2’), or normal (‘N’). Table 5.1 represents the assessment of
the selected anomalies, based on Table 4.3 of Chapter 4.

5.2.2 Data Collection

Data were collected for 10 days between 6:00 am and 8:00 pm. At intervals that vary
between two and four hours. Each edge device collected all the measurements and,
one by one, added a column for the anomaly type (‘N’: normal; ‘F’: failure, ‘A’: attack),
another column for the type of failure (‘N’:none, ‘F1’: temperature, ‘F2’: miscalibration,
‘F3’: disconnection) and other one for the type of attack (‘N’: none, ‘A2’: ‘A1’: DoS,
Data Injection.
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Table 5.1: Anomalies in IIoT according to framework description.

Anomaly

Probability
(High,
Medium,
Low)

Risk
(High,
Medium,
Low)

Variables
Dataset
(Easy/
Complex)

Decision
(Include/
Exclude)

High-
Temperature
Failure

Medium Medium
CPU
temperature,
frequency.

Easy Include

Miscalibrated
Sensor Medium Medium Sensor data Easy Include

Sensor
Disconnected Medium Medium Sensor data,

WiFi packets. Easy Include

Data
Injection
Attack

High High

Bytes sent
or received
over WiFi,
CPU load.

Easy Include

Denial of
Service
Attack

High High

Bytes sent
or received
over WiFi,
CPU load.

Easy Include

Data from CPS

Through the HMI, an edge device collects data from all the motors in the conveyor
system. This data is stored on this device in CSV files and includes anomaly-type
labels. In the data processing phase, these files are shared with the other edge devices
to build the datasets. Data collected from the CPS includes the motors’ frequency,
voltage, current, and power and the recipe executed on the conveyor belt system. Sound,
accelerometer, and gyroscope measurements were collected from the motors through
MQTT protocol. In this implementation, we use the frequency of each motor in the
CPS as context information to improve anomaly detection in the IIoT system.

Internal Data from CPU Edge device

Internal data from each Raspberry PI was collected with the RPi-Monitor [190] app
and saved into CSV files using a Python script. The CSV file includes measurements of
internal temperature, frequency, CPU load for 1, 5, and 15 minutes, voltage, free and
available memory, and packets sent and received over WiFi. Additionally, the current
consumed by the CPU, collected through an INA219 sensor, was added to the CSV file.

Other information collected

Relative humidity and environment temperature measurements were collected at two
different locations in the plant. The data was sent over MQTT to the nearest brokers,
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who stored it in CSV files. Table 5.2 shows details of raw data collected by the IIoT
system to classify anomalies. It should be noted that the data collection rate is variable
since it depends on network congestion in ESP32 and Raspberries PI.

Table 5.2: Data Collection Details. Raw data were collected from different sources with
different sampling rates and stored in separate files.
Location File Variables Rate Description
CPS modbus.csv frequency, voltage,

current, power,
recipe

0.1s Data from all the mo-
tors in the conveyor sys-
tem

CPS sound.csv sound 0.001s Sound of motor
CPS mqtt_accel.csv accelerometer, gyro-

scope
0.001s Motor vibrations

Edge Device internal.csv Temperature, fre-
quency, CPU load
for 1, 5, and 15
minutes, voltage,
free and available
memory, packets via
WiFi, current

1s .. 10s Internal data from edge
device collected with
RPI monitor App.

Building mqtt_temp.csv humidity and tem-
perature

10s Environment data

5.3 Data Processing

Data preprocessing is a critical stage in machine learning, as it considerably impacts the
effectiveness and efficiency of the learning process. Raw data often contains inconsisten-
cies, errors, or outliers that can negatively affect the model’s performance. Preprocessing
involves cleaning data by handling missing values, removing duplicates, and correcting
errors. The primary data processing tasks on the collected dataset are described below.

5.3.1 Data Exploration

Data exploration ensures that subsequent steps in data science and machine learning are
informed, effective, and tailored to the data’s specifics. It involves understanding the
data’s patterns, irregularities, underlying structure, and critical characteristics through
visual and quantitative methods. Figure 5.5 shows some graphics obtained during visual
data exploration. The figure shows, for example, that the features associated with
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packets sent and received over WiFi have increasing trends, positive or negative, or that
the motor’s sound is strongly related to its frequency. Visual exploration of the data
also allows us to determine outliers and normal ranges of the data.
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Figure 5.5: Raw Data Collected. The plots display the appearance of some of the signals
that are gathered by the IIoT system.

Likewise, the statistical distribution of the collected data was determined using the
Fitter library and a Python script. Table 5.3 showcases the relationship between var-
ious variables and the statistical distributions of each one. It indicates that none of
the features show a normal distribution, which is frequently assumed in statistical mod-
eling due to its symmetric bell-shaped curve defined by a mean and variance. The
environmental temperature and humidity, along with CPU-related metrics such as load,
current, temperature, and the number of packets sent, are described by a lognormal
distribution. This distribution is chosen when the data are positively skewed, mean-
ing there is a longer tail on the right side of the distribution. Powerlaw distribution is
more suitable for the CPU frequency, voltage, and number of packets received. This
distribution is characterized by the prevalence of more minor occurrences and the rarity
of larger ones, with a slower decay rate in the tail, indicating a higher probability of
extreme values than other distributions. Memory variables, such as available and free
memory and CPU load over the last minute, correspond to a Cauchy distribution. This
distribution is notable for its heavy tails, which imply a higher likelihood of observing
extreme values. An exponential distribution is mentioned for motor current and sound,
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Table 5.3: Statistical Distribution of Features. None of the features correspond to a
Gaussian distribution, which determines some data processing actions.
Distribution Features Description

Lognormal

indoor_temp, load15,
indoor_humidity,
soc_temp, load5,
wifi_sent, cpu_ current

Random variable whose logarithm
is normally distributed. It is used in
various fields to model non-negative
data with a rightward skew.

Powerlaw cpu_freq, cpu_volt,
wifi_receiv,

Large occurrences are extremely rare,
but small ones are quite common

Cauchy load1, memory_free,
memory_avail,

The tails of a Cauchy distribution
decrease polynomially.

Exponential motor_sound,
motor_current

Describes a process in which events
occur continuously and independently
at a constant average rate.

Uniform
motor_freq,
motor_volt,
motor_recipe

All intervals of the same length have
an equal probability of being observed

typically used to model the time between continuous and independent events occurring
at a constant average rate. Lastly, motor frequency, voltage, and the recipe in CPS are
uniformly distributed. The uniform distribution assumes that all values within certain
bounds are equally likely to occur, making it a natural choice for modeling scenarios
where no value within the range is any more likely than another. In the context of IoT,
real-time data generation is usually rapid, and many data sources are available. This
often results in issues related to the time alignment of these data sources. Table 5.2
displays various sampling rates that range from 1 millisecond to 10 seconds, depending
on the data source. Moreover, it is necessary to consider that data did not arrive at the
edge device consistently. If the communication channel was flooded or the device was
occupied with other activities, samples were obtained and stored at a lower frequency.
For instance, the internal CPU data of the Raspberry Pi could be acquired from the
RPIMonitor application either every second or every 10 seconds. The abovementioned
problem makes merging all the data into one dataset even more challenging.

The study case involves changing the sampling rate of time series data from different
sources to the same rate. A fixed rate of 5 samples per second was selected, translat-
ing to a sampling rate of 0.2 seconds. To achieve this, subsampling has been carried
out on the data gathered from the motor, including sound and vibration. Additionally,
oversampling has been performed on the internal data of the CPU, as well as on room
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temperature and humidity, applying linear interpolation. This sampling rate was chosen
to lose the minimum number of samples possible, considering that even signals sam-
pled every 0.1s sometimes arrived at their destination every 0.3s or slower due to the
conditions mentioned in the previous paragraph.

5.3.2 Data Integration

Another aspect to consider is that not all data sources were available simultaneously.
Figure 5.6 represents with timelines the availability of each file integrated into a single
dataset for one of the edge devices on the first three days of collection. In the first
session of day 1, intermittencies are observed for most of the files. This is probably due to
adjustments and tuning of the testbed. So, all data collected before 18:00 was discarded.
Each data collection session was stored in a different CSV file. In the graph for day two,
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Figure 5.6: Raw Data Integration for Edge device N.4. Data was collected in separate
CSV files, which were later integrated.

an interruption is observed after 16:00; although brief, thousands of samples stopped
being collected for some variables, so day two is taken as two separate sessions. In other
parts of the graph, it is observed that the end of a line overlaps with the beginning
of the following line in a different color; this indicates that a few data are missing,
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which, depending on their quantity, have been reconstructed using linear interpolation
or hot-deck imputation, as described below.

5.3.3 Missing Data

When working with deep learning, it is vital to handle missing data effectively since it
can significantly impact the accuracy and reliability of model predictions. We used linear
interpolation and hot-deck imputation to fill in missing data to address this issue. Linear
interpolation involves generating a new value between two existing values by taking their
average. We used this technique when only a few samples were missing, such as when
oversampling was applied to ensure a consistent sampling rate of 0.2s across the whole
time series. Besides, we used hot-deck imputation when there were delays in collecting
data due to congestion in the communication channel or microprocessor issues, causing
the absence of many samples. This technique involves copying a range of well-conformed
data of the same signal into the interval where samples are missing. In Chapter 2, these
techniques are explained.
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Figure 5.7: Handling Missing Data. Two methods to replace missing values are linear
interpolation, which creates a new value between two samples, and hot deck imputation,
which copies a range of data from the same series.

Figure 5.7 shows a section of the motor sound where fewer samples than the average
rate were collected (above). This section is zoomed in, and the graphs in the center show
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what the signal would look like if the data were aggregated using the linear interpolation
technique (red) and hot-deck imputation (green). It could be concluded a priori that for
long stretches of data, hot-deck imputation better preserves the signal’s shape (below).

5.3.4 Feature engineering

Feature engineering is a process that involves using domain knowledge to create new
features or modify existing ones to increase the predictive power of a machine learning
model. Practical feature engineering can significantly improve the performance of the
model. In this case, to eliminate the ever-increasing trend of bytes sent and received over
WiFi, the delta value of the signals has been decided to be used. This means taking the
difference between each value and the value that comes immediately after (in the case of
bytes sent) or before (in the case of bytes received). Figure 5.8 provides a representation
of the original signals (a. and b.) and the delta values of each signal (c and d.). Another
reason for performing this transformation was the wide range of data. The difference
between the initial and final data values is of the order of Megabytes, which hides in the
scaled data the subtle patterns that indicate the occurrence of an anomaly.
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Figure 5.8: Transforming bytes sent [x(i − 1) − x(i)] and received [x(i) − x(i − 1)] over
WiFi network into delta to eliminate trends in data.

An autoencoder was trained to detect anomalies, and a transformer-based model
was used to classify them, both with the original variables and the variables adjusted to
the delta, to validate the advantage of using the delta value. Table 5.4 summarizes the
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ability of models that use the original signals from bytes sent and received over WiFi to
detect and classify anomalies versus the same models trained with the delta value of the
original signals. The first case observes the poor performance of the detector and the
classifier. Both have difficulty detecting attacks and some failures, reflected in the low
F1 score. While the models trained with the delta signals present performances above
90%.

Table 5.4: Transforming the features related to the bytes sent and received over WiFi
and using the delta of these variables improve the model’s ability to detect anomalies.

Model Delta F1 F2 F3 A1 A2 F1-Score

Detector
Yes ✓ ✓ ✓ ✓ ✓ 0.963900
No ✓ ✓ ✗ ✗ ✗ 0.542901

Classifier
Yes ✓ ✓ ✓ ✓ ✓ 0.900422
No ✓ ✓ ✗ ✗ ✓ 0.650023

The previous paragraphs are visually explained in Figure 5.9. On the left side of
the figure, you can observe the outcome of the autoencoder trained to detect anomalies
using the delta of the variables of bytes sent and received over WiFi.
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Figure 5.9: Transform of Features related to WiFi. On the right side, the autoencoder
used as a detector does not reconstruct the signal. On the left, the autoencoder detects
the anomalies correctly. The horizontal axis represents the number of samples.

The input of the autoencoder is represented above in blue; next, the reconstruction
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and the subtraction between the two previous plots are displayed. A dashed line indi-
cates the threshold level. Any value above this threshold level is classified as anomaly.
Compared with the actual anomaly (below), it can be concluded that this detector per-
forms well. On the contrary, the result of a model trained with the original WiFi signals
is shown on the right side. In this case, the autoencoder does not adequately reconstruct
the input or recognize a pattern that can be labeled as an anomaly. From now on, the
delta value of the bytes sent and received over WiFi will be used, and the original signals
will be discarded.

5.3.5 Handling Outliers

In this work, outliers were handled on two occasions. One, outliers were eliminated from
normal data before calculating the threshold values for the anomaly detector; this will
be discussed in later sections. The other was before scaling the data between zero and
one [0,1] to train machine learning models. In the latter, huge values were truncated to
a value considered acceptable by the knowledge domain.
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Figure 5.10: Handling Outliers. Extreme values in WiFi features have been truncated
to ensure that the classifier still detects small variations evidenced by some anomalies
after scaling the data.

Figure 5.10 illustrates this point. The plots in blue and red (above) indicate that
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when the network is experiencing low activity, the delta values for sent bytes remain
below 100k bytes, and received bytes remain below 10k bytes, except for some outliers.
However, during increased network activity, these delta values increase to 400k and 20k
bytes, respectively, as shown in the second row of plots. In some instances, such as a DoS
(denial of service) attack, these delta values can increase to over 1 Megabyte, as shown in
the following plots. If we scale these features with such extreme values, the patterns that
describe other anomalies will go unnoticed by the detector and the classifier. To avoid
this, we have truncated these values to 400k and 20k bytes, respectively. This truncation
does not pose any problem while putting the framework into production since we can
consider this aspect while collecting the data. Finally, the effect of this truncation can
be observed in the plots shown below.

5.3.6 Data Scaling

Datasets often contain features that have varying units and scales. These differences can
result in a biased model that prioritizes larger-scale features. To avoid this issue, it is
essential to normalize or standardize the data so that each feature contributes equally to
the model’s prediction. As mentioned in Chapter 4, normalization is used when assuming
a Gaussian distribution, dealing with features at different scales and algorithms that are
sensitive to variance, while min-max scaling is used for data bound to a specific range
and for ease of interpretation.

Table 5.5: Scaling Data. Data is not a Gaussian distribution. Minimal-max scaling is
better since mean-std generates data outside the [0,1] range. The table shows information
from only one of several CSV files.
Scaling SoC Temp Load1 WiFi Sent Current Sound Freq

Mean_Std min -1.385498 -1.931534 -1.16142 -1.330004 0 0
max 0.978175 4.968823 -0.495499 5.899065 247 4000

Min-Max min 0.105186 0.002449 0.61101 0.035836 0 0
max 0.368395 0.165765 0.77309 0.635752 0.622 1

As noted in the data exploration section, the time series collected do not follow
Gaussian distributions. This means that when we used the mean and standard deviation
to scale the data, they were not scaled between zero and one. Therefore, in this case,
we used the min-max technique. Table 5.5 shows the interval values for some variables
after normalization and min-max scaling. In the first case, negative values and values
greater than one were observed. In the second case, all data fell between 0 and 1. It



92 Framework Implementation Results

is important to note that some data did not reach the extreme values 0 and 1 because
other datasets had higher or lower values that influenced standardization.

5.3.7 Non-Numerical Features Encoding

Machine learning models are often designed to process numerical data. To achieve
this, categorical data must be converted to a numerical format using one-hot encoding,
label encoding, or embedding layers. In the case of an anomaly detector, a single-
column output is used. The values in this column represent normal data (value=0) and
anomalies (value=1). For the classifier, three columns were coded: normal (000), failure
(010), and attack (100).

5.3.8 Sequence Creation

As discussed in Chapter 2, transforming time series data from [n_samples, n_features]
to [n_samples, n_times, n_features] enhances learning dynamics, efficient data uti-
lization, flexible forecasting, feature utilization, model input requirements, and temporal
dependency capture. Figure 5.11 graphically shows the process of making this transfor-
mation. Each sequence of n_times samples is pooled separately for each feature.

Figure 5.11: Graphical representation for transforming time series data from [n_samples,
n_features] into [n_samples, n_times, n_features]

The figure shows that the new dataset takes up much more memory space. For further
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illustration, please note the n_times vertical samples highlighted in the figure on the
left and their horizontal location on the right. The window size that slides through the
data is essential to creating the sequence. The window size must be sufficient to detect
patterns but not so extensive that it dilutes the identification of anomalies. Due to the
absence of a universal solution, experimentation is essential to balance relevance and
computational efficiency. Table 5.6 shows the F1 score for two classifiers, a Transformer
and an LSTM model. According to this result, a window with 300 samples is the best
option for the case study and will be used in later models.

Table 5.6: Length sequence data. Two anomaly classification models with different
sliding window sizes were evaluated based on their f1 score, and a length of 300 samples
was the best for these classifiers.

Window Transformer Model LSTM Model
100 0.799250 0.754377
200 0.812366 0.773365
300 0.833983 0.781802
400 0.804396 0.684335
500 0.778157 0.617783

5.4 Feature Selection

Specific machine learning algorithms can be computationally expensive and require a
long time to train on datasets with many samples. To speed up the training process, a
feature selection approach has been followed to reduce the number of input variables and
simplify the data, making it easier to work with during the training phase. Statistical
techniques and domain knowledge have been combined to discard variables that should
not be part of the training set. Figure 5.12 shows a variable correlation analysis based
on the Spearman index; it was detected that the CPU load in the last 5 minutes was
strongly correlated with the load of 1 and 15 minutes. The same thing happened with
the frequency and voltage of the CPU. As explained in the previous section, bytes
sent and received over WiFi were replaced by their delta values. The temperature and
relative humidity in the building where the CPS operates are not directly related to
what happens in the IIoT and were considered to be discarded.

Finally, during the data exploration, it was observed that the CPU’s available and free
memory did not show significant variations when an anomaly occurred; therefore, they
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Figure 5.12: Correlation of Variables. In the training set, variables strongly correlated
with each other should not be chosen since they provide little additional information to
the model but represent a computational cost.

were identified as candidates to be discarded. An anomaly detection model was trained
for 10 epochs, with and without each of the above-mentioned variables, to decide whether
a variable should remain in the training set. Table 5.7 shows the metrics obtained for
each case.

Table 5.7: Feature Selection. The anomaly detector model was trained with all IIoT
and context variables. Then, variables were eliminated one by one, and the model was
trained again until the training set was reduced to 8 features.

Features Excluded Reason Precision Recall F1 score

15 wifi_sent,
wifi_receiv

It was used
delta_sent &
delta_receiv

0.518628 0.327521 0.401446

13 indoor_temp,
%humidity

Not related to
IIoT or CPS

0.912609 0.522313 0.664335

10
cpu_freq,
memo_free,
memo_avail

Changes not
related to
anomalies

0.933241 0.529629 0.675710

8 load5,
cpu_volt

Strongly correlated
to other variables

0.922616 0.630521 0.749053

The best performance was obtained with a training set that included internal tem-
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perature, 1—and 15-minute load, the bytes sent and received delta, CPU current con-
sumption, and motor sound. Motor frequency was also included as context information
to improve model performance.

5.5 Context Information

The cyber-physical influences the IIoT dataset, which affects certain variables. For in-
stance, the sound sensor is impacted by the operating frequency of the nearest motor.
Figure 5.13 demonstrates that the frequency of the motor provides insight into the abnor-
mal behavior of the sound signal. This is particularly noticeable during a data injection
attack (on the left) or a sensor disconnection failure (on the right). If the sound level
fluctuates while the motor frequency remains unchanged, this indicates the presence of
an anomaly. Therefore, the frequency of the motors has been used as “context informa-
tion” for the dataset extracted from the IIoT system to detect and classify anomalies.
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Figure 5.13: Context information. By incorporating motor data into the Industrial
Internet of Things (IIoT) dataset, it becomes possible to distinguish between normal
and abnormal behavior.

Table 5.8 summarizes the effect of context information on anomaly detection and
classification models. When they do not use the CPS feature, none of the models rec-
ognize the sound sensor disconnection failure (F3), and the classifier does not recognize
the data injection attack. The above reduces the F1-score in both models.
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Table 5.8: Effect of context information on anomaly detection and classification models.
Context information helps classify all anomalies.

Model Context F1 F2 F3 A1 A2 F1-Score

Detector Yes ✓ ✓ ✓ ✓ ✓ 0.963900
No ✓ ✓ ✗ ✓ ✓ 0.926210

Classifier Yes ✓ ✓ ✓ ✓ ✓ 0.900422
No ✓ ✓ ✗ ✗ ✓ 0.833197

The negative effect of the lack of context information on the anomaly detector and
classifier is graphically observed in Figure 5.14. The plot above on the left shows that A1
attacks are classified as events, meaning that the classifier does not know the nature of
the anomaly. Something similar occurs with fault F3, above right, which is also classified
as an event. Meanwhile, models that incorporate context information mostly correctly
detect and classify these failures and attacks (plots in the middle left and right). Below,
on both sides, you can see the actual classification of each anomaly
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Figure 5.14: Context information helps classify correctly attacks (A1) and failures (F3).
Without context information, A1 and F3 are classified as Event

5.6 Data Balancing

In scenarios where certain classes are not evenly represented, resampling the dataset
can help balance the class distribution. This implementation involves undersampling
the majority of the normal class. Three strategies have been tested to balance the
training sets. In the first one, data trimming was done around each anomaly, taking a



5.7 Anomaly Detection 97

proportional amount of normal data on either side; the rest was discarded. The second
strategy was to randomly eliminate as much normal data as necessary to balance the
amount of all classes. The dataset was first balanced in the above methods, and then the
sequence of the form [n_samples, n_times, n_features] described in previous sections
was generated. In the third strategy, the data sequence was first created, and then the
sequences necessary to balance the set were randomly removed. The latter guarantees
that the sequence contains consecutive samples, which seems to facilitate the training
of transformer or LSTM-type models, according to the results in Table 5.9, where the
latter balancing strategy shows a higher F1-score.

Table 5.9: Strategies for Balancing Data. Two classifiers have been trained using bal-
anced data with three strategies to undersample the normal class.

Balancing Strategy Metrics Transformer LSTM

Trimming data
around the anomaly

Loss 0.198894 0.313834
Precision 0.799662 0.769618
Recall 0.828263 0.665499
F1-score 0.813661 0.713732

Undersampling majority
class after creating
sequences

Loss 0.105932 0.340602
Precision 0.896060 0.805174
Recall 0.794975 0.823306
F1-score 0.842446 0.814089

Undersampling majority
class before creating
sequences

Loss 0.187673 0.111698
Precision 0.817306 0.810257
Recall 0.458463 0.773303
F1-score 0.587372 0.791299

5.7 Anomaly Detection

The framework described in chapter 4 proposes using an anomaly detector followed by a
classifier. Using two models instead of one aims to reduce the number of false positives
and negatives while increasing the possibility of detecting zero-day anomalies, that is,
those not available when training the models. The latter is achieved using unsupervised
models that did not require labeled data during training, as with autoencoders.

5.7.1 Autoencoder

Autoencoders are a type of machine-learning model that is commonly used for detecting
anomalies. These models work unsupervised and consist of two networks: an encoder
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and a decoder. The encoder processes the input data and converts it into a latent
representation. Then, the decoder takes this representation and generates an output.
By comparing the input and the output data, the differences can be used to identify
anomalies in the original data [53]. In anomaly detection, an autoencoder learns to
compress and decompress normal data efficiently. When an anomalous piece of data
(which significantly differs from the norm) is fed into the autoencoder, the reconstruction
error (the difference between the input and the reconstructed output) tends to be higher.
Here, a threshold for the reconstruction error is set. The data point is classified as an
anomaly if the error exceeds this threshold. This is described graphically in Figure 5.15;
the first plot (above) shows the delta signal of the packets received over WiFi, and
then it shows the autoencoder’s reconstruction of this signal. The plot below shows
the subtraction between both signals and the threshold value as a dotted line. Any
value over this line is labeled as an anomaly. In this thesis, two autoencoders have been
trained, and their performance was compared.
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Figure 5.15: Anomaly Prediction with Autoencoder. Any sample above the threshold
value is labeled as an anomaly.

In this framework implementation, one-dimensional convolutional (conv1D) alternat-
ing with dropout layers have been used for the encoder and transposed convolutional
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with dropout layers for the decoder. Conv1D is a type of convolutional layer designed
explicitly for 1D data. It is commonly used in sequential data models, such as time
series. This layer performs a convolution operation involving a sliding filter moving
along the input data, effectively allowing the model to learn from local patterns within
the sequence. A dropout layer is a simple and effective technique used in autoencoders
to prevent overfitting. The dropout method randomly sets a fraction of input units to
zero at each update. This randomness helps prevent the model from relying too heav-
ily on any one or a few neurons. Moreover, transposed convolutional layers perform
the reverse operation of a standard convolutional layer. While a standard convolution
reduces the spatial dimensions of the input, a transposed convolutional layer increases
the spatial dimensions of its input. Figure 5.16 shows the schematic of the anomaly
detector. When the threshold value that monitors the reconstructed signal is exceeded,
the anomaly classifier is invoked. Otherwise, the sample is labeled as normal.
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Figure 5.16: Autoencoder-based anomaly detector. The 1D-convolutional model recon-
structs the input signal. The anomaly classifier is invoked if both signals’ differences
exceed the threshold value.

An additional autoencoder has been implemented using LSTM coupled with dropout
layers for both the encoder and decoder. The output is wrapped with a TimeDistributed
layer that applies a Dense layer to each time step of the input tensor separately. LSTMs
are a type of recurrent neural network (RNN) ideal for handling sequence data, such as
time series, due to their specialized architecture, which is particularly effective at cap-
turing long-term dependencies in sequence data. The LSTM encoder is responsible for
compressing the input sequence into a fixed-size context vector that represents the most
essential features of the input data. At the same time, the decoder tries to reconstruct
the original input sequence. The TimeDistributed layer wraps another layer, such as a
Dense layer, and applies it to each time step of the input tensor independently. This
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implies that the same layer weights are used for each time step, but the operation is
carried out separately for each slice. The following section shows a comparison between
these two autoencoders.

5.7.2 Thresholds

The threshold value separates normal values (lower) from anomalies (higher). The strate-
gies for its calculation were described in chapter 2. In this study case, the maximum
difference value between the input and the reconstructed output (reconstruction error)
is used as the threshold, as shown in Figure 5.17, where the dotted line representing the
threshold value passes just through the highest value level. It should be noted that a
threshold value is calculated for each feature.
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Figure 5.17: Threshold Value. The maximum value of the reconstruction error made by
the autoencoder is chosen as the threshold (dashed line).

When calculating the threshold values, it must be considered that although datasets
with normal data are used, they may present outliers not reconstructed by the au-
toencoder. This causes the reconstruction error (difference between the input and the
reconstruction) to be higher, and therefore, so is the threshold value, affecting the per-
formance of the autoencoder when it is deployed in production. To solve the above issue,
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the outliers from the normal data must be removed before calculating the threshold val-
ues. Figure 5.18 shows the effect of removing the outliers; the plot above shows extreme
values every time the sound sensor abruptly changes level. To eliminate them, all values
above mean plus three times standard deviation are replaced by the comparison value
(if value > mean() + 3 ∗ std() then value = mean() + 3 ∗ std()); the result is shown
in the plot below, where the graphic appears without outliers. Since some signals, such
as sound, change their reference level considerably, calculating the mean and standard
deviation was carried out by ranges of values where the motor speed (context variable)
remained constant. The outlier removal process was automated through a Python script.
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Figure 5.18: Removing outliers before calculating the threshold value. Outlier values
(above) are replaced by mean() + 3 ∗ std(). This operation is carried out by ranges of
values where the behavior of the CPS remains constant to guarantee the average value
of the signal to be pruned.

5.7.3 Metrics

Several metrics have been proposed in the literature to evaluate the performance of
machine learning models. One of the most used is accuracy, which measures the number
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of samples correctly classified. However, in this study case, there are unbalanced datasets
with much higher amounts of normal data than data labeled as anomalies. This generates
high accuracy even though the model performance is very poor. Instead, precision,
recall, and f1-score metrics that do not involve the number of true negatives (normal
values) in their equations are recommended. The equations of these metrics are shown
in Table 5.10. On one hand, Recall shows how many anomalies were not detected;
many false negatives lead to a low recall. On the other hand, precision shows how
much normal data was identified as anomalies; a high false positive rate produces a
low precision. While F1-score provides an estimate between the false positive and false
negative rates. Chapter 2 shows a more detailed description of these and other metrics.

Table 5.10: Evaluation Metrics for Anomaly Classification. For unbalanced datasets,
it is advisable to use metrics that do not involve the majority class, such as precision,
recall, and F1 score.

Metric Formula What It Evaluates

Accuracy T P +T N
T P +T N+F P +F N

Overall correctness
Sensitivity (Recall) T P

T P +F N
Correctly identified positives

Precision T P
T P +F P

Correctness of positive predictions

F1-Score 2 × Precision×Recall
Precision+Recall Balance between precision and recall

5.8 Anomaly Classification

In anomaly classification, the objective is to predict a discrete label for a given input from
a set of predefined classes. This is generally a supervised learning task where a model
is trained on a dataset with known labels, learning to classify new data based on this
training. In this case, two classifiers, a transformer-based and an LSTM-based model,
were trained to predict whether the data is normal, an attack, or a failure. Initially
designed for natural language processing tasks, a Transformer neural network can be used
as an anomaly classifier for time series. The transformer model used here is similar to the
original encoder proposed in [49]. The core component of Transformer models is the self-
attention mechanism, which allows the model to weigh the importance of different parts
of the input data relative to each other. For anomaly detection, this means Transformer
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can simultaneously consider the entire sequence of inputs, determining which features
are most abnormal or indicative of an anomaly. Expanding on self-attention, multi-
head attention facilitates joint attention across different representation subspaces. This
is particularly useful in anomaly detection as it can help the model capture multiple
types of relationships or anomalies in the data. Figure 5.19 shows the schematic of
the transformer used in the anomaly classifier. We do not use the input embedding or
positional encoder mechanisms; instead, the temporal sequences described in previous
sections were delivered directly to the encoder block. The rest of the layers, feed-forward,
and normalization were implemented as in the original version in [49].
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Figure 5.19: Transformer-based classifier. Data sequences are delivered directly to the
encoder without input embedding or positional encoding layers.

The second anomaly classifier uses LSTM layers alternating with Dropout to reduce
the risk of overfitting and a TimeDistributed wrapping of a dense layer. An LSTM
network comprises a series of LSTM units, each responsible for maintaining a memory
cell that can retain information across time steps. In the next section, the performance
metrics of both classifiers are compared when the anomaly detector invokes them.

5.9 Anomaly Detector and Classifier Together

Figure 5.20 shows the schematic of the anomaly detector and classifier operating to-
gether. The detector implements an autoencoder model, which alerts of anomalies and
invokes the classifier to determine whether it is a failure or an attack. If the classi-
fier generates an ambiguous diagnosis indicating that the detector wrongly labeled the
sample and that it is actually normal, an event label is generated so that the human op-
erator can classify it manually. Two anomaly detection models were trained, one based
on convolutional autoencoders and the other on LSTM autoencoders. Additionally, two
classifiers were evaluated, one transformer-based and the other LSTM-based.
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Figure 5.20: Anomaly Detection and classification. If the difference between the input
and the reconstructed signal exceeds the threshold value, the classifier is invoked to
classify the samples between failures and attacks; if it is classified as normal, it is labeled
as an event so that the operator can classify it manually.

Table 5.11 shows the capacity of each model to avoid false negatives (recall) and
false positives (precision) and the harmonic mean of both (F1). The convolutional-
based autoencoder is the best detector, while the transformer-based classifier performs
best in the three metrics. More detailed information about framework evaluation for
anomaly classification in IIoT is presented in the next chapter.

Table 5.11: Comparison between anomaly detector and classifier models. Conv1d-based
autoencoder and transformer-based classifier show better precision, recall, and F1 score
metrics.

Block Model Precision Recall F1-Score

Detector Conv1d 0.973610 0.913190 0.942433
LSTM 0.962211 0.870235 0.913915

Classifier Transformer 0.893578 0.944319 0.918198
LSTM 0.880367 0.894792 0.887471

5.10 Discussion

The results presented in this chapter underscore the efficacy and potential of the pro-
posed IIoT anomaly classification framework in identifying and categorizing anomalies
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within industrial IoT systems. The comprehensive experimental setup, involving an em-
ulated Cyber-Physical System (CPS) and a robust Industrial Internet of Things (IIoT)
monitoring system, provided a realistic testbed to evaluate the framework’s performance.
The framework demonstrated high detection accuracy and low false positive rates across
various test scenarios, highlighting its reliability in real-world applications. The convo-
lutional autoencoder-based anomaly detector outperformed the LSTM-based model in
terms of precision, recall, and F1-score, indicating its superior capability to differentiate
between normal and abnormal data patterns. This suggests that convolutional layers
are more effective in capturing spatial dependencies within the data, which are critical
for accurate anomaly detection in IIoT environments.

Integrating advanced machine learning algorithms and real-time data processing tech-
niques enabled the framework to promptly and accurately identify anomalies, reducing
potential downtime and enhancing operational safety. The comparative analyses demon-
strated the framework’s robustness and adaptability, making it a viable solution for var-
ious industrial applications. The case studies and real-world scenarios further validated
the framework’s practical applicability. The successful identification of failures and cy-
ber attacks within the testbed highlights the framework’s comprehensive approach to
anomaly classification. By leveraging data from multiple sources and employing clas-
sification models, the framework provides actionable insights that can facilitate timely
interventions and mitigate the impact of anomalies on industrial operations.

Despite the promising results, several challenges and limitations were encountered
during the implementation. Data quality and noise variability posed significant chal-
lenges in maintaining high detection accuracy. Additionally, the framework’s perfor-
mance heavily relied on the quality of data preprocessing and feature engineering, un-
derscoring the importance of these stages in the anomaly detection pipeline. The frame-
work’s scalability in larger, more complex industrial environments also requires further
investigation. Looking ahead, several avenues for future research and improvement have
been identified. Enhancing the framework’s ability to handle diverse and noisy data
through advanced preprocessing techniques and robust feature selection methods could
improve its performance. Exploring the integration of additional data sources, such as
environmental and contextual information, could provide a more holistic view of the op-
erational environment, enhancing anomaly detection accuracy. Additionally, real-time
adaptation and learning capabilities could be incorporated to enable the framework to
evolve with changing operational conditions and emerging anomaly patterns.

In conclusion, the proposed IIoT anomaly classification framework has demonstrated
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substantial potential to enhance the reliability and safety of industrial systems. Its high
detection accuracy and practical applicability make it a valuable tool for modern indus-
trial environments. By addressing the identified challenges and exploring future research
directions, the framework can be further refined and adapted to meet the evolving needs
of the industrial sector. The next chapter presents other results related to evaluating
the performance of the optimized anomaly detection and classification models. Likewise,
the challenges and opportunities for improvement of the framework are discussed.



Chapter 6

Results and Discussion

In this chapter, we build upon the previous one, in which we introduced the results
of implementing the framework for classifying anomalies in IIoT. Firstly, we describe
preliminary experimentation presented at the International Engineering Congress IC-
EXPOI 2022, where we differentiated between a temperature failure, a denial-of-service
attack, and the normal operation of an IIoT edge device. Then, this chapter describes
the dataset used in evaluating machine learning models, which contains labeled failures
and attacks. Next, we present the results of implementing the IIoT anomaly detection
strategy, including the validation process to eliminate isolated samples that may be
false positives; this is achieved by invoking the anomaly classifier only if the number of
samples labeled by the detector in the sequence of 300 samples is greater than 15. We
then discuss the cross-validation results used to evaluate the performance of the anomaly
classifier. During the evaluation, we also used a dataset with unknown anomalies to test
the model’s ability to classify unseen anomalies. Moreover, lightweight versions of the
models were run on a Raspberry PI3 to evaluate the ability of an edge device to run
the anomaly classifier. Finally, we review the results, discuss any limitations of the
implemented framework, and suggest potential improvements.

6.1 Preliminary Experimentation

In previous work, presented at the International Engineering Congress IC-EXPOI 2022
and published in [19], we explored the topic of anomaly classification in IIoT systems.
The experimental purpose was to determine if it could differentiate between a tem-
perature failure, a denegation-of-service attack, and normal operation of an Industrial
Internet of Things edge device. An IIoT system was selected to simulate events, failures,
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and attacks in its edge device. This system consisted of several low-cost sensors that
monitor a three-phase motor. Each sensor sends the motor current, temperature, sounds,
speed, or vibration data through a microcontroller (ESP32) low-cost development sys-
tem using MQTT to a Raspberry PI edge device. Raspberry processes motor data and
activates alarms when a value exceeds a normal range. Then, the processed information
was sent to a cloud application that stores and displays statistics on a website. An Edge
device was monitored to detect some electronic component failures or cyberattacks. To
differentiate between high-temperature failure or denial of service (DoS) attacks on an
edge device processor, the Raspberry current consumption and some edge device in-
ternal data such as temperature, CPU load, frequency, voltage, and free memory were
selected. The Raspberry PI collected the data. A fan regulated the edge device pro-
cessor temperature. Moreover, the DoS attack was controlled by a computer running
Kali Linux in a local network. This work found it possible to differentiate a temperature
failure, a denial-of-service attack on the MQTT broker, and normal data using low-cost
solutions. In that case, a current sensor and the internal data of the microcontroller
were used. The analysis of variance (ANOVA) showed that failure, attack, and normal
were statistically different. It also found that while current, frequency, and voltage dif-
ferentiate between normal and attack, temperature allows differentiation between failure
and normal system operation. The following section describes the results obtained by
classifying anomalies in the proposed framework.

6.2 Case Study

As mentioned in the previous chapter, a testbed was established to evaluate the efficiency
of the Anomaly Classifier Framework. The testbed included an emulated Cyber-Physical
System (CPS) and an Industrial Internet of Things (IIoT) system. The CPS utilized
in the testbed was an emulation of a real-life four-belt conveyor system, and the IIoT
system monitored the CPS via a cloud platform, allowing for real-time data analysis and
reporting. In addition to the results presented in Chapter 5, others of equal relevance
within this thesis are presented here. First, a significant contribution of this thesis is the
creation and publication of an IIoT dataset with anomalies labeled as faults and attacks.
Second, implementation and evaluation of the framework for anomaly classification,
using cross-validation with the training set, with a dataset that contains new anomalies
not seen during training, and evaluation of lightweight versions of the models running
on an edge device.
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6.2.1 Dataset

Generating enough data is key for detecting and classifying anomalies, including fail-
ures, cyberattacks, and perturbations [191]. Some authors develop datasets using simu-
lators [22, 53, 79, 191], testbeds [23, 46, 47, 50, 60], or online data [2, 9–11, 23, 35, 37, 45,
52, 55, 59]. Utilizing accessible online datasets can help cut down on collection expenses,
and there are references available from researchers who have already utilized them. Nev-
ertheless, these datasets have already established features and anomalies, making the
introduction of new failures or attacks challenging. In the early phases of this thesis,
an exhaustive search was performed on online datasets taken from IIoT systems with
anomalies labeled as failures and attacks. However, the search was unsuccessful. We
did not find a dataset that separately labeled enough failures and attacks, so we used a
testbed to build a set with data that met the established requirements. This dataset is
available online in a public repository [192].

We collected data for 10 days, storing information for approximately 4 hours daily.
The data has been stored in 48 files, of which 31 contain normal data, 13 contain failures
due to high temperature (F1), miscalibration (F2), and disconnection (F3), and 4 files
contain attacks type DoS (A2) and data injection (A1). Each file can contain one or
more anomalies of the same or different types. There are 2105134 normal records, 60463
records labeled as failures, and 38755 as attacks. Table 6.1 summarizes these data.
Files with F3 failure were not used to train the model but to evaluate its ability to
detect and classify anomalies not seen during training. This dataset will help address
the shortage of ensembles for training models that classify anomalies into failures and
attack categories. Likewise, it could classify specific types of failures or attacks.

Table 6.1: Dataset. The data was stored in 48 files, 31 with normal data, 13 with failures,
and 4 with attacks. The anomaly types are, F1: High Temperature, F2: Miscalibration,
F3: Disconnection, A1: Data Injection Attack, A2: DoS Attack.

Files Normal Failures Attacks F1 F2 F3 A1 A2
31 1254183 0 0 0 0 0 0 0
13 345547 60463 0 11 8 2 0 0
4 505404 0 38755 0 0 0 8 5

48 2105134 60463 38755 11 8 2 8 5
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6.2.2 IIoT Anomaly Detection Strategy

In the anomaly detection stage, we chose an unsupervised model to increase the chances
of detecting anomalies not part of the model’s training data. Specifically, we trained
several autoencoders, some with LSTM and others with CONV1D layers. The ones with
CONV1D layers proved more effective in detecting anomalies in the available dataset,
as shown in Table 6.2.

Table 6.2: Anomaly Detector and Classifier Architectures. Conv1d-based autoencoder
and transformer-based classifier show better precision, recall, and F1 score metrics.

Block Model Precision Recall F1-Score

Detector
Conv1d 0.973610 0.913190 0.942433
LSTM 0.962211 0.870235 0.913915

Classifier
Transformer 0.893578 0.944319 0.918198
LSTM 0.880367 0.894792 0.887471

This section describes the optimized model for anomaly detection. First, the metrics
used in this thesis to evaluate models are precision, recall, and F1-score. This is because
none of these metrics involve true negatives TN, which are many and affect the balance
of the calculations. Precision offers an idea of the false positives (FP) detected by each
model; FP generates alerts for anomalies that do not exist, which unnecessarily occupies
the attention of the human operator of the system. Recall reports false negatives (FN);
these are abnormal samples overlooked and labeled as normal. Finally, F1 score is the
harmonic mean between precision and recall. Table 6.3 shows these metrics for different
combinations of the number of neurons in the latent space and the outer layer. The
selected detector model is an autoencoder with 64-32-7 Conv1d layers in the encoder
and 7-32-64 Conv1dT layers in the decoder. All layers alternate with dropout layers and
use the Relu activation function, except for the output dense layer, which uses Sigmoid.
The model was also compiled with optimizer Adam, a learning rate equal to 10e-4, and
mean square error (MSE) as a loss function.

Sliding Window to Detect Anomalies

Some anomalies are not detected sustainably. Instead, samples labeled as anomalies
alternate with more samples labeled as normal. Figure 6.1 shows this situation, from
which we could affirm a priori that the anomaly is correctly detected. However, if we
calculate the confusion matrix, the detector performs poorly.
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Table 6.3: Optimization of detector model. Different combinations of neurons were
evaluated in the latent space and the outer layer. Metrics in the table are precision (P),
recall (R), and F1-score

Neurons
in Latent

Space

Neurons in Last Layer
64 128 256 512

4
P=0.808084
R=0.951924
F1=0.87412

P=0.926982
R=0.923562
F1=0.92526

P=0.881727
R=0.919158
F1=0.90005

P=0.910769
R=0.935526
F1=0.92298

5
P=0.974133
R=0.852114
F1=0.90904

P=0.970842
R=0.906076
F1=0.93734

P=0.941134
R=0.927826
F1=0.93443

P=0.943897
R=0.930083
F1=0.93693

6
P=0.999988
R=0.868602
F1=0.92967

P=0.966125
R=0.905189
F1=0.93466

P=0.965977
R=0.930577
F1=0.94794

P=0.580565
R=0.940041
F1=0.71781

7
P=0.999424
R=0.909402
F1=0.95229

P=0.988256
R=0.866788
F1=0.92354

P=0.926175
R=0.902689
F1=0.91428

P=0.867233
R=0.943609
F1=0.90381

The strategy used in the detector and the classifier is to take advantage of the
sequence of 300 samples with which the model works. If, in the output sequence, there
are at least fifteen samples that exceed the threshold value, the sequence is labeled as
an anomaly. As a consequence of this algorithm, the anomaly prediction appears as a
continuous line in the middle plot of the figure we refer to.
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Figure 6.1: Some anomalies are detected intermittently, alternating with normal samples.
Here is a zoom of around 80k on the right. If at least fifteen samples exceed the threshold
value in the output sequence, it is labeled as an anomaly. Here, ‘1’ means anomaly, and
‘0’ is normal.
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Table 6.4 shows the metrics calculated using the 300-sample sequence and the original
anomaly points. The results indicate that the window is necessary for metrics to reflect
the model’s performance. Another consequence of this detection strategy is that outliers
from a single sample are ignored and do not trigger the anomaly alert. The anomaly alert
is only activated with 15 or more samples identified as such. It means that anomalies
lasting less than three seconds are ignored because the sampling rate is 0.2s.

Table 6.4: Anomalies detected intermittently affect the metrics related to the confusion
matrix (TP, TN, FP, FN) and, therefore, precision, recall, and F1-score. The sequence
of the last 300 samples is used to validate if at least 15 samples have been labeled as
anomalies to label the new sample.

Prediction TN TP FN FP Accuracy Precision Recall F1-Score
300-Sample
Sequence

76119 8839 231 0 0.997288 1 0.974531 0.987101

Counting
anomaly
points

76113 518 8552 6 0.899541 0.988549 0.057113 0.107984

6.2.3 Anomaly Classification Results

The framework implemented in Chapter 5 proposes a two-stage classification model.
First, an autoencoder evaluates a sequence with the latest 300 samples; if predicted as
an anomaly, the classifier is invoked to determine whether it is a fault or an attack.
However, the classifier may indicate that the sample is normal. In this case, the model
labels it as an event so the human operator of the system can investigate it and take
further action.

Several deep learning models based on LSTM and Transformer layers were trained
to choose the best option for the multi-class classifier. Table 6.2 showed some metrics
that helped choose the transformer-based architecture. In the classifier optimization
process, models with different numbers of encoders and head attentions were evaluated.
Table 6.5 shows the average metrics that helped choose an architecture similar to the
original encoder introduced in [49] with 3 encoders and 20 head attentions. The model
was also compiled with optimizer Adam, a learning rate equal to 10e-4, and categorical
cross-entropy as a loss function.
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Table 6.5: Optimization of the classifier model. Several models were trained by varying
the number of encoders and head attentions. Metrics are precision (P), recall (R), and
F1-Score

Multi
Head

Attention

Encoders
2 3 4

5
P=0.887275
R=0.904949
F1=0.89597

P=0.886532
R=0.926697
F1=0.90612

P=0.884081
R=0.885009
F1=0.88449

10
P=0.867476
R=0.859819
F1=0.86358

P=0.889589
R=0.922560
F1=0.90572

P=0.870347
R=0.878698
F1=0.87445

15
P=0.883482
R=0.890425
F1=0.88689

P=0.883524
R=0.878886
F1=0.88114

P=0.868162
R=0.798919
F1=0.83205

20
P=0.852745
R=0.730866
F1=0.78706

P=0.887309
R=0.927279
F1=0.90680

P=0.880627
R=0.868781
F1=0.87461

6.2.4 IIoT Anomaly Classification Model Validation

To ensure that the model performs well on new data, we utilized our version of the
cross-validation technique to evaluate the classifier model. This involves splitting the
data into subsets, training the model on some sets, and validating it on the remaining
ones. Usually, the dataset is divided into k equally sized subsets, or folds, with a
standard choice being k=10, known as 10-fold cross-validation. However, our data is
stored in 15 CSV files of different sizes, each containing one or more failures or attacks.
So, each of these files represents a fold. The model is trained on k1 folds and validated
on the remaining fold for each. This process is repeated k times, with each fold used
exactly once as the validation data. Performance metrics (precision, recall, F1-score) are
calculated for each iteration. The final performance estimate is obtained by averaging
these metrics across all folds. The results of this cross-validation are shown in Table 6.6.
The average result provides a precision of 0.952, indicating a very low False Positive (FP)
rate, typically related to remaining effects after the anomaly’s cause has ceased; recall
is 0.878, corresponding to a higher rate of False Negatives (FN) than FP. FN usually
occurs right at the beginning of the anomaly due to a delay in detection or the middle
when some samples are erroneously labeled as normal. Finally, the average F1-score is
0.91 for the evaluation set. When calculating precision, recall, and F1-score separately,
we obtain 0.945, 0.797, and 0.862 for attacks and 0.954, 0.908, and 0.927 for failures,
inferring that our system detects failures better than attacks.

In Figure 6.2, you can see the graphical representation of the classification results
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Table 6.6: Cross-Validation for IIoT Anomaly Classifier.
File Anomaly Precision Recall F1-Score

edge1_11.csv F1, F2 0.96 0.82 0.89
edge1_12.csv F1, F1 1 0.8 0.89
edge1_13.csv F2, F2 0.81 0.92 0.86
edge1_14.csv A2 0.9 0.74 0.81
edge2_9.csv F2, F1 0.89 0.97 0.93
edge2_10.csv F1, F1 0.99 0.75 0.85
edge2_11.csv F2 1 1 1
edge2_12.csv A2, A1, A1, A1, A1 0.91 0.88 0.89
edge3_8.csv F1, F2 0.97 0.99 0.98
edge3_9.csv F1, F1 1 0.81 0.9
edge3_10.csv F2 1 1 1
edge3_12.csv A2, A1, A1, A1, A1 0.97 0.85 0.91
edge4_10.csv F1 0.88 1 0.94
edge4_11.csv F1, F2 1 0.93 0.96
edge4_12.csv A2, A2 1 0.72 0.84

Total: 0.95 0.88 0.91

during cross-validation for the edge1 device. The graphs for the other edge devices can
be found in Appendix B. All anomalies were identified, with a few datasets showing a
small number of samples labeled as events. In the edge1_13 dataset, the number of
samples incorrectly labeled as events slightly increased. After validating 15 samples (3
seconds) in the input sequence, the classifier in the middle eliminates false positives not
associated with real anomalies detected by the detector on the left. The plots on the
right display the actual anomalies.

6.2.5 Model Validation with New Anomalies

In the preceding section, we thoroughly analyzed the cross-validation results. The pro-
posed system successfully identified all anomalies and did not produce any false positives
that triggered alarms for non-existent anomalies. This upcoming section will examine
the classifier’s performance to uncover anomalies not part of the training set. We uti-
lized two files containing sensor disconnection failures (F3) to evaluate the model. The
results, as illustrated in Figure 6.3, indicate that the anomalies were indeed detected,
but they were classified as normal events by the classifier. Consequently, the system ac-
tivated an alert for the human operator to classify these anomalies manually. While this
outcome is not ideal, it is nonetheless noteworthy that the system successfully detected
the occurrence of an anomaly.
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Figure 6.2: Graphical result for cross-validation with edge1 device data. Here ‘1’ rep-
resents ‘anomaly’ and ‘0’ represents ‘normal’. Letters represent A: attack, E: event, F:
failure, F1: temperature failure, F2: misconfigured failure, A2: DoS attack.

6.2.6 Deploying the IIoT Anomaly Classifier in a Testbed

To ensure timely anomaly detection, it is recommended that the classifier be run on each
edge device. The deployment results are depicted here. The TFLiteConverter function
set from the TensorFlow library generated a lightweight version of the classifier and
detector models to run on a Raspberry PI3. Validation is performed with data collected
at the same time that the training data was collected. The goal here is to evaluate
the performance of the models when running a lightweight version of them on an edge
device. The code used on the Raspberry to invoke the models appears in the appendix B.
Figure 6.4 shows the four anomalies evaluated. There are no false positives that generate
unnecessary alerts in the graph. In most cases, some samples are classified as events,
meaning the detector classified them as anomalies, but the classifier labeled them as
normal; however, they are very few compared to the correctly classified data, so the
human operator does not doubt whether it is a failure or an attack. The classification
graph of the dataset called "edge2_F1" shows a delay in detection; it starts around
sample 3k, but the original anomaly (on the right) begins near 2k.
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Figure 6.3: Model validation with new data. F3 anomalies were detected but classified
as events.

The above is consistent with what was observed throughout the entire experimental
process with the temperature failures (F1). Table 6.7 The table shows precision, recall,
and F1-score values consistent with those obtained using the original model in Google
Collaboratory, where the system shows slightly better performance classifying faults
than attacks.

Table 6.7: Evaluating the IIoT Anomaly Classifier in a Testbed
File Anomaly Precision Recall F1-score

edge2_F2 Miscalibration
Failure 0.88 0.97 0.92

edge2_F1 Temperature
Failure 1 0.84 0.91

edge2_A2 DoS Attack 0.86 0.93 0.89
edge2_A1 Data Injection 0.91 0.88 0.89
Average 0.91 0.90 0.90

Table 6.8 summarizes the most important results of this work. The precision, recall,
and F1-score metrics for the detector and both, with cross-validation and running on
the testbed.
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Figure 6.4: Evaluating the IIoT Anomaly Classifier in the Testbed. Detector labels
samples as normal (0) or anomaly (1), and classifier labels as normal (N), event (E),
failure (F), and attack (A).

Table 6.8: Summary of main results of the work.
Model Precision Recall F1-Score
Detector 0.97 0.91 0.94
Both. Cross Validation 0.95 0.88 0.91
Both. Testbed 0.91 0.90 0.90

6.3 Discussion

The case study results demonstrate the effectiveness and robustness of the Anomaly
Classifier Framework in detecting and classifying anomalies within an Industrial In-
ternet of Things (IIoT) system. The case study’s key contributions include creating
a comprehensive IIoT dataset with labeled anomalies. The dataset generated for this
study fills a significant gap in available IIoT datasets, which often lack the diversity and
specificity needed for comprehensive anomaly detection and classification. By using a
testbed that emulates a real-life four-belt conveyor system, we were able to produce a
dataset with detailed labels for various types of anomalies, including high temperature
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(F1), miscalibration (F2), disconnection (F3), Denial of Service (DoS) attacks (A2), and
data injection attacks (A1).

The unsupervised anomaly detection model architecture (64-32-7 Conv1D layers in
the encoder and 7-32-64 Conv1DT layers in the decoder) provided the best balance of
precision, recall, and F1-score. This model’s optimization, using metrics that do not
involve true negatives (TN), ensures a realistic evaluation of its effectiveness in practical
scenarios where false positives (FP) and false negatives (FN) are critical considerations.
Using a sliding window technique to validate anomaly detection significantly improved
the model’s performance. The model reduces the likelihood of false alarms triggered by
transient outliers by requiring at least 15 consecutive samples to exceed the threshold
value before labeling an anomaly. This strategy aligns with the operational requirements
of real-world CPS and IIoT systems, where stability and reliability are paramount.
The two-stage classification approach, involving an initial detection by the autoencoder
followed by a detailed classification using a transformer-based model, proved effective.
With its optimized architecture (3 encoders and 20 head attentions), the transformer-
based classifier achieved high precision and recall, particularly distinguishing between
failures and attacks. The cross-validation results, with an average precision of 0.952
and an F1-score of 0.91, indicate that the model is reliable and can generalize well
to new data. One notable aspect of the study was the model’s ability to detect but
not classify unseen anomalies (e.g., sensor disconnection failures, F3). These anomalies
were identified but labeled as normal events, triggering an alert for human intervention.
This outcome highlights the model’s sensitivity and the importance of having a fallback
mechanism where human operators can review and classify new types of anomalies. This
feature is crucial for maintaining the system’s adaptability and continuous improvement.

The results of this thesis have several implications for developing and deploying
anomaly detection systems in IIoT. Creating a robust, publicly available dataset en-
hances the research community’s ability to train and test new models. The demonstrated
effectiveness of the Conv1D autoencoder and transformer-based classifier provides a
strong foundation for future improvements and adaptations. Future work could further
refine the model to improve its ability to classify previously unseen anomalies auto-
matically. Additionally, exploring the integration of semi-supervised learning techniques
could enhance the system’s adaptability and reduce the reliance on human intervention.
Finally, expanding the dataset with more varied anomalies and operational scenarios
will continue to enhance the model’s robustness and applicability in diverse real-world
settings. In conclusion, the Anomaly Classifier Framework presented in this thesis signif-
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icantly advances IIoT anomaly detection and classification. Its comprehensive dataset,
optimized detection and classification models, and effective anomaly-handling strategies
provide a robust solution for maintaining the safety and reliability of IIoT systems.

6.4 Challenges and Limitations

This section discusses the challenges encountered during the implementation and eval-
uation phases and how they were overcome. It also discusses limitations encountered
during the investigation, such as limitations due to the dataset’s nature or the model’s
computational complexity. The assumptions made during the research and how they
may affect the generalization of the results are also mentioned.

• Resampling has been applied to integrate all signals into a single dataset. This has
caused some variables to lose many samples that would have helped in anomaly
detection and classification. An alternative would be to feed the models with the
timing signals and their original sampling rates without integrating them into a
single dataset.

• Although the models’ performance improved due to the context information from
the CPS, there is room for exploring other forms of context. For instance, domain-
specific knowledge with specific rules could be utilized in the form of industrial
process data. Alternatively, formulas involving mathematics or physical laws could
create artificial data.

• Several hyperparameters were optimized to improve the performance of the models.
This optimization process considered the time and computation available. It is
possible that more precise tuning would have improved the models’ metrics a little
more.

• To balance the data, undersampling was used for the majority class representing
normal data. Oversampling methods have yet to be explored, including GANs or
simulators to generate new data with anomalies.

• The anomaly classification framework in IIoT was implemented and evaluated in a
testbed. However, applying this framework to real industrial systems is necessary
to identify improvement opportunities.
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• A possible improvement in the framework would be to add a phase that provides
specific instructions to implement cyber security measures such as identification,
authentication, and authorization to guarantee the privacy, availability, and in-
tegrity of the data in the IIoT framework.

• The process of selecting variables was carried out using statistical analysis, domain
knowledge, and recursive elimination of variables. Feature extraction techniques
can be tested by projecting the original variables into a new variable space or using
techniques available in the literature for the data used in neural networks.

• The IIoT Anomaly Classification Framework could be improved by adding a task
directly related to techniques for models to be automatically retrained and im-
proved while in production.

• New framework implementations should include a greater diversity of failures and
attacks that could affect IIoT. It would be a good idea to create a taxonomy of
faults and attacks for IIoT with recommendations on how to simulate and publish
them online.

This thesis presents a robust anomaly detection and classification framework in In-
dustrial Internet of Things (IIoT). The framework’s adaptability and continuous im-
provement capabilities, validated through cross-validation, underscore its potential for
real-world applications. The next chapter will present the conclusions and outline future
research directions.
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Conclusion and Future Work

The rapidly evolving landscape of data-intensive environments needs robust anomaly
detection and classification frameworks to ensure system reliability and security. This
thesis proposes a dual-model approach, which employs separate anomaly detection and
classification models and represents a strategic advancement in addressing these chal-
lenges. This framework leverages the strengths of specialized models to enhance the
accuracy and efficiency of anomaly identification and categorization. This approach of-
fers a comprehensive solution that is adaptable to various applications by focusing on
detecting and classifying anomalies. The following conclusion summarizes the contribu-
tions and research work in the thesis and some future research lines.

7.1 Conclusion

This thesis has successfully demonstrated the efficacy of a dual-model framework for
anomaly detection and classification in data-intensive environments, such as those en-
countered in IIoT systems. The separate but complementary models for detecting and
classifying anomalies leverage advanced machine learning techniques, optimized pro-
cessing methods, and contextual integration to significantly enhance anomaly manage-
ment’s accuracy and efficiency. This framework shows promise in adapting to the dy-
namic nature of IIoT environments, ensuring its long-term applicability and effectiveness.
Throughout this work, we have demonstrated the importance of several key components:

• According to the latest research, anomaly classification in Industrial Internet of
Things (IIoT) is still an ongoing area of study. Out of a hundred articles reviewed,
only 13% provide some form of categorization, focusing mainly on industrial pro-
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cess differentiation and types of failures or attacks. In comparison, 51% of the
articles focus on attack detection, while 38% address anomalies in general.

• The comprehensive framework describes a new approach to detecting and cate-
gorizing anomalies in IIoT environments. Combines CPS domain knowledge with
data-driven insights from IIoT technologies. The choice of machine learning al-
gorithms, tailored to the specific characteristics of the dataset and the nature of
anomalies, plays a significant role in the framework’s success. To identify the most
suitable techniques for different anomaly detection scenarios, we explored models,
including supervised, unsupervised, and semi-supervised learning approaches.

• Anomaly detector and classifier two-stage model: The first model is designed to
detect anomalies. This model can detect new anomalies by only identifying devia-
tions from the norm. Once anomalies are detected, a separate classification model
is employed to categorize these anomalies into failure and attack classes. This
model leverages supervised learning techniques, utilizing labeled data to learn and
predict the nature of the anomalies. Separating detection and classification tasks
allows for more specialized and accurate classification results. The cross-validation
obtained a precision equal to 0.88, a recall of 0.93, and an F1-score of 0.90. Further-
more, false positives and negatives occurred around the anomalies used to evaluate
the system, which did not generate false alarms that represented additional effort
for the system’s human operators.

• The evaluation of the anomaly classifier with an anomaly (sensor disconnection
failure) not used to train the models showed that the detector identifies it. Still,
the classifier labels it as an ‘event’ so that the human operator can proceed to
manage it. This is considered a success of the framework because it can detect
new anomalies.

• Nearly half (48.9%) of the reviewed papers in the state-of-the-art focus on de-
ploying anomaly detection systems on edge devices. This reflects the industry’s
shift towards edge computing, aiming to reduce latency and enhance real-time
decision-making. The experiment evaluating the light versions of the detection
and classification models running on a Raspberry PI3 showed similar metrics to
the original models running on Google Colaboratory: 0.91 for precision, 0.90 for
recall, and 0.90 for F1-score.
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• Context Information Integration: Incorporating context information significantly
enhances the framework’s ability to classify anomalies accurately. Contextual data,
such as temporal patterns, environmental conditions, and domain-specific factors,
provide additional layers of information that improve the model’s decision-making
process. By integrating this contextual information, we can better distinguish
between true anomalies and benign deviations, thereby reducing false positives
and improving overall detection accuracy. In chapter 5, deep learning models were
trained with and without context information. The results showed that in the
anomaly detector model, F1-score went from 0.92 to 0.96 and from 0.83 to 0.90 in
the classifier when they used the speeds of the industrial process motors as context
information.

• Evaluation Metrics: Implementing appropriate evaluation metrics is essential for
assessing model performance and ensuring the reliability of the classification re-
sults. We emphasized using precision, recall, and F1-score metrics to evaluate the
framework comprehensively because none of these metrics use the True Negative
rate (normal data) in their equations. Since the number of normal samples far
exceeds the number of anomalies, the metrics, including TN, favor the normal
class.

• Scalability and Real-Time Processing: The ability to scale the framework and pro-
cess data in real-time is critical for practical applications. We discussed strategies
for optimizing the framework to handle large volumes of data and deliver timely
anomaly detection results, ensuring its applicability in dynamic environments.

• Continuous Improvement: Anomaly classification is an ongoing process that re-
quires continuous monitoring and model updates. We highlighted the importance
of incorporating feedback loops, periodic retraining, and adapting to evolving data
patterns to maintain the framework’s effectiveness over time.

The proposed framework addresses the challenges associated with anomaly classifica-
tion and provides a comprehensive solution that can be adapted to various applications,
from cybersecurity to industrial monitoring. By integrating advanced machine learning
techniques with robust preprocessing and evaluation methods, this framework offers a
powerful tool for identifying and responding to anomalies.
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7.2 Future Work

Various interesting paths can be explored to enhance the framework’s performance. One
such way is to focus on overcoming the current limitations of the methods, which can
include factors such as scalability, adaptability, and robustness. Additionally, the de-
veloped framework has the potential for further extensions, such as incorporating new
data sources and exploring alternative algorithmic approaches. Some lines of work sum-
marized below offer exciting opportunities for researchers and practitioners to continue
advancing the field and improving the effectiveness of the methods.

• Heterogeneity of Data Sources. Training detection and classification models with
diverse data sources such as time series, images, thermography, videos, sounds,
and production data can improve their accuracy and decision-making capabilities.
Exposing models to various data inputs helps them better recognize failures and
attacks.

• Distributed Architecture. The anomaly classification framework addresses anoma-
lies in Industrial Internet of Things (IIoT) systems. Implementing the framework
in a distributed architecture enhances adaptability, scalability, and the ability to
recognize local and global anomalies. Organizations could train ML models in a
distributed manner using federated learning techniques to recognize and recover
from individual node anomalies. Implementing this framework requires careful
planning, attention to detail, and a deep understanding of IIoT, machine learning,
and distributed systems.

• Incorporate Specific Domain Knowledge. Incorporating specific domain knowledge
into anomaly classification in an IIoT system enhances accuracy. Consider the
operational context and environmental factors, and use expert rules and machine
learning. Utilize physical laws governing CPS operations for richer data sets.

• Retraining Models. Updating models regularly with new data and insights from
ongoing operations and expert feedback is important. This helps the system adapt
to changes in its environment. Experts can provide valuable insights into anomalies
and their severity, so it is necessary to establish a mechanism to provide feedback
on the system’s predictions. Incorporating historical data about past failures,
attacks, and successful operations can refine model predictions and improve system
accuracy.
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• Test advanced techniques for variable selection, data balancing, and hyperparam-
eter optimization for enhancing the robustness and accuracy of predictive models.
Specifically, exploring sophisticated techniques for variable selection can aid in
identifying the most influential predictors, thereby simplifying models and improv-
ing interpretability. Addressing data imbalances through advanced balancing tech-
niques such as synthetic data generation or adaptive sampling could significantly
improve model performance, especially in skewed class distributions. Furthermore,
refining hyperparameter optimization strategies, potentially through automated
machine learning frameworks, would streamline the model development process
and potentially reveal more optimal configurations that manual tuning might miss.
These advanced techniques collectively promise to elevate the efficiency and efficacy
of future modeling efforts, offering a more nuanced understanding and application
in predictive analytics.

• Improving Computational Efficiency. In the Industrial Internet of Things (IIoT)
realm, edge devices are crucial in managing and processing large amounts of data
generated by industrial processes. These devices are positioned at the boundary
between the industrial environment and the broader network infrastructure and are
responsible for real-time data analysis to identify anomalies. To optimize anomaly
classification on edge devices, algorithm complexity can be refined, less resource-
intensive models can be implemented, and hardware acceleration using specialized
hardware such as FPGAs or GPUs can be utilized. These optimizations ensure
that the processing capabilities of edge devices are maximally utilized without
compromising speed and accuracy.

• Customized Alerts and Responses. Design an alert system to provide actionable,
contextual information and prioritize it based on anomaly severity and type. Cre-
ate automated or manual intervention protocols based on the anomaly type to
minimize downtime and prevent damage. This framework should be an integral
part of the operational process, offering insights and actions tailored to the specific
needs and challenges of the monitored CPS.

• Expansion to Other Domains. The IIoT anomaly classification framework can
benefit from customization to address different industrial sectors’ unique needs
and challenges. Customizing the anomaly detection algorithms to consider spe-
cific types of equipment, failure modes, and environmental factors pertinent to
each sector can enhance the accuracy and relevance of anomaly detection. Sector-
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specific pilot studies could be implemented to validate and refine the adaptability
of the IIoT anomaly classification framework across various domains. Compar-
ative studies across different sectors could provide insights into the framework’s
versatility and areas for improvement.

• Self-Improving Systems. The goal is to create a seamless and automated work-
flow within IIoT environments that detects anomalies and takes intelligent actions
to mitigate risks efficiently. This proactive approach to industrial operations can
significantly enhance reliability, reduce costs, and improve safety standards. Feed-
back mechanisms classify anomalies, improving adaptability and efficiency over
time. Machine learning models adjust their behavior based on real-world feed-
back, refining detection algorithms and enhancing system reliability. Establishing
a robust loop where the system reacts to anomalies and records the outcomes of
its actions is essential for effective feedback mechanisms.

• More Data and Diverse Anomalies. Testing the IIoT anomaly classification frame-
work with larger and more varied datasets is crucial for enhancing robustness
and minimizing overfitting. Incorporating diverse scenarios and data types into
the training process helps the model generalize better across different conditions
and equipment types in IIoT systems, improving accuracy and reliability. Exten-
sive testing with comprehensive datasets is fundamental for developing a resilient
anomaly detection system that can deliver consistent and reliable results across a
broad spectrum of IIoT environments. Incorporating a broad spectrum of anoma-
lies into the testing phase helps the framework recognize and react to various
situations, improving reliability.

• Theoretical Advancements. Theoretical studies are crucial in understanding anomaly
classification within the Industrial Internet of Things. Researchers can design
more effective anomaly detection systems by delving into underlying principles and
mathematical models. This academic pursuit enhances theoretical understanding
and fosters innovation for practical applications. Encouraging more theoretical
research could transform the evaluation and development of anomaly detection
models, leading to industry standards and improved systems.

• Security Enhancements. Ensuring the security of the IIoT anomaly classification
framework is crucial to protect IIoT environments from adversarial attacks. As
these systems become increasingly essential for critical infrastructure operations,
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they become tempting targets for malicious entities seeking to disrupt operational
processes or gain unauthorized access to sensitive data. Adversarial attacks, such
as data poisoning or model evasion, can manipulate anomaly detection, result-
ing in incorrect classifications, missed detections, and wrong automated responses.
Strengthening the security of the anomaly classification framework requires de-
ploying robust mechanisms to detect and counter such attacks, ensuring the sys-
tem’s outputs’ integrity and reliability. This involves implementing techniques
like anomaly detection specific to adversarial attempts, which can identify unusual
patterns in the input data that may indicate tampering or intrusion.

• Collaborative and Interdisciplinary Research. Partnering with industrial entities
lets them gain real-world insights and validate the IIoT anomaly classification
framework. These collaborations provide access to diverse industrial environments
for testing the framework on actual data streams. They also allow for incorporating
domain-specific knowledge and operator feedback, ensuring effective and robust
anomaly detection and response mechanisms tailored to industry needs.

The potential for further research and development in this field is vast. By pursuing
these avenues, researchers can continue to advance the field of anomaly detection, making
robust, adaptable systems that can meet the evolving challenges of modern industrial
environments.
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Appendix for Chapter 5

A.1 Sequence Creation Code

The time series is transformed from the form [n_samples, n_features] to [n_samples,
n_times, n_features] before feeding the detection and classification models; this allows
to detect the correlation between the samples. The following function allows you to
perform this transformation.

1 def create_sequences (values , n_samples , n_times , n_features ):
2 output = np.zeros( (n_samples -n_times , n_times , n_features ) )
3 for j in range(np.array( n_features )):
4 features = []
5 for i in range(np.array( n_samples - n_times )):
6 output [i,:,j]= values [i : (i + n_times ),j]
7 return output

Listing A.1: Generating training sequence

The following is a snippet of code used to invoke the function that generates the
training sequence.

1 df_training = np.array( x_train [:])
2 N_SAMPLES = df_training .shape [0]
3 N_FEATURES = df_training .shape [1]
4 x_train_sequence = create_sequences (np.array( df_training ), np.array(

N_SAMPLES ), np.array( N_TIMES ), np.array( N_FEATURES ))
5 x_train_sequence = x_train_sequence . astype (np. float32 )

Listing A.2: Invoking training sequence
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A.2 Predicting and Classifying Anomalies Code

The code shown below invokes the anomaly detector model. If the number of samples
labeled as anomalies exceeds 15, the anomaly classifier is invoked.

1 # Predicting and Classifing Anomalies
2 anomaly = [’A’, ’F’, ’E’]
3 N_TIMES = 300
4 pred_detect = []
5 classes = []
6 with tf. device (’/ device :GPU :0’):
7 i = N_TIMES
8 while i < ( x_test .shape [0] - 1):
9 df_original = np. expand_dims ( x_test [i- N_TIMES :i], axis =0)

10 diff = np.abs( detector . predict ([ df_original ], verbose =False) -
df_original )

11 diff = diff. reshape (diff.shape [1], diff.shape [2])
12 pred_detect += list(np.sum(diff > threshold , axis =1) /(np.sum(diff >

threshold , axis =1) +0.0001) )
13

14 if np.sum( pred_detect [i- N_TIMES :i]) > 15:
15 predicted = classifier . predict ([ df_original ], verbose =False)
16 predicted = predicted . reshape ( predicted .shape [1], predicted .shape

[2])
17 classes += list ([ anomaly [np. argmax (predicted , axis =1)[j]] for j

in range( N_TIMES )])
18 else:
19 classes += list(np.full(N_TIMES , ’N’))
20 i+= N_TIMES
21 # Show metrics
22 true_labels = list(df.iloc [: len( classes ) ,22])
23 predicted_labels = classes
24 print( classification_report ( true_labels , predicted_labels ))

Listing A.3: Predicting and Classifying Anomalies Code
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Appendix for Chapter 6

B.1 IIoT Anomaly Detector Code

The following is the code that outlines the architecture of the autoencoder used as an
anomaly detector in the framework’s implementation after optimizing the number of
neurons in the external and internal layers.

1 # Autoencoder CONV1D Model
2 def autoencoder_model ( x_train ):
3 import tensorflow as tf
4 from numpy import array
5 from keras. models import Sequential
6 from keras. layers import Dense
7 from keras. layers import Conv1D
8 model = keras. Sequential (
9 [

10 layers . Conv1D ( filters =64, kernel_size =5, padding ="same", strides
=1, activation ="relu", input_shape =( x_train .shape [1], x_train .shape
[2])),

11 layers . Dropout (rate =0.2) ,
12 layers . Conv1D ( filters =32, kernel_size =5, padding ="same", strides

=1, activation ="relu" ),
13 layers . Dropout (rate =0.2) ,
14 layers . Conv1D ( filters =7, kernel_size =5, padding ="same", strides

=1, activation ="relu" ),
15

16 layers . Conv1DTranspose ( filters =7, kernel_size =5, padding ="same",
strides =1, activation ="relu" ),

17 layers . Dropout (rate =0.2) ,
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18 layers . Conv1DTranspose ( filters =32, kernel_size =5, padding ="same"
, strides =1, activation ="relu" ),

19 layers . Dropout (rate =0.2) ,
20 layers . Conv1DTranspose ( filters =64, kernel_size =5, padding ="same"

, strides =1, activation ="relu" ),
21 layers .Dense(units= x_train .shape [2], activation =’sigmoid ’)
22 ]
23 )
24 return model

Listing B.1: Detector Model. Autoencoder code

B.2 IIoT Anomaly Classifier Code

The following code outlines the architecture of the transformer used as an anomaly
classifier in the framework’s implementation. This model uses three encoders and 20
multi-head attentions.

1 # Construct the transformer model
2 total_heads =20
3 sequence_length = x_train_sequence .shape [1] # timestep
4 embed_dim = x_train_sequence .shape [2] # variables in dataset
5 classes = y_train_sequence .shape [2] # A-F-N
6 dense_units = embed_dim
7 # Custom layers
8 embedding_layer = EmbeddingLayer ( sequence_length , embed_dim )
9 encoder_layer = EncoderLayer ( total_heads , dense_units , sequence_length ,

embed_dim , classes )
10 classify_layer = Dense(classes , activation =’softmax ’)
11

12 # Connecting the layers together
13 inputs = Input(shape =( sequence_length , embed_dim ))
14 encoder_1 = encoder_layer ( inputs )
15 encoder_2 = encoder_layer ( encoder_1 )
16 encoder_3 = encoder_layer ( encoder_2 )
17

18 dense = Dense( dense_units , activation ="relu")( encoder_3 )
19 outputs = classify_layer (dense)
20

21 model = Model( inputs =inputs , outputs = outputs )
22 model. compile ( optimizer =tf.keras. optimizers .Adam( learning_rate =1e -4) ,

loss=’categorical_crossentropy ’)
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23 model.save(" transformer .keras")
24 model. summary ()

Listing B.2: Detector Model. Autoencoder code

B.3 IIoT Anomaly Classification Model Validation

Figure B.1 shows the graphical interpretation of the classification results during cross-
validation for the edge1 device. All anomalies were detected; some anomalies present few
samples labeled as events, and in the edge1_13 set, the number of samples erroneously
labeled as events increases slightly. Thanks to the validation of 15 samples (3 seconds)
in the input sequence, the classifier (in the middle) eliminates the false positives not
associated with real anomalies generated in the detector (on the left). The plots on the
right show the actual anomalies.
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Figure B.1: Graphical result for cross-validation with edge1 device data.

Figure B.2 shows edge2 device anomalies successfully detected with a few samples
classified as events. Remember that event occurs when the classifier considers that a
sample labeled by the detector as an anomaly is normal.
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Figure B.2: Graphical result for cross-validation with edge2 device data.
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Figure B.3: Graphical result for cross-validation with edge4 device data.

Figure B.4 shows a similar result for the other edge devices.
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Figure B.4: Graphical result for cross-validation with edge3 device data.

Figure B.3 shows that all anomalies have been detected and classified correctly. Even
a false positive detected by the detector was omitted by the classifier by applying the
rule of 15 positive samples in the sequence of 300 samples.

B.4 Deploying the IIoT Anomaly Classifier in the
Testbed

The code shown in B.3 corresponds to a function in Python that receives the sequence of
300 samples and passes it to the detector. If it predicts 15 samples or more as anomalies,
the detector invokes the classifier model to label them as failures or attacks. But if the
classifier considers one of these samples normal, the function labels it as an event so that
a human operator can classify it manually.

1 def predicting ( sequence ):
2 anomaly = [’A’, ’F’, ’E’]
3 interpreter_d . set_tensor ( input_details_d [0][ ’index ’], sequence )
4 interpreter_d . invoke ()
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5 prediction_d = interpreter_d . get_tensor ( output_details_d [0][ ’index ’])
[0]

6 diff = np.abs( prediction_d - sequence . reshape ( sequence .shape [1],
sequence .shape [2]))

7 pred_detect = list(np.sum(diff > threshold , axis =1) /(np.sum(diff >
threshold , axis =1) +0.0001) )

8 if np.sum( pred_detect [i- N_TIMES :i]) > 15:
9 interpreter_c . set_tensor ( input_details_c [0][ ’index ’], sequence )

10 interpreter_c . invoke ()
11 predicted = interpreter_c . get_tensor ( output_details_c [0][ ’index ’])

[0]
12 return pred_detect , list ([ anomaly [np. argmax (predicted , axis =1)[j]]

for j in range( N_TIMES )])
13 else:
14 return pred_detect , list(np.full(N_TIMES , ’N’))

Listing B.3: Function to invoke detector and classifier models on Raspberry PI3.

The previous function can be invoked from code similar to the following, where x_test
is a dataframe with a test dataset.

1 from sklearn . metrics import classification_report
2 N_TIMES = 300
3 pred_detect = []
4 classes = []
5 i = N_TIMES
6 while i < ( x_test .shape [0] - 1):
7 df_original = np. expand_dims ( x_test [i- N_TIMES :i]. astype (np. float32 ),

axis =0)
8 classify = predicting ( df_original )
9 pred_detect += classify [0]

10 classes += classify [1]
11 i+= N_TIMES
12 print(len( classes ))
13 true_labels = list(df.iloc [: len( classes ) ,22])
14 predicted_labels = classes
15 print( classification_report ( true_labels , predicted_labels ))

Listing B.4: Code to invoke predicting() function.
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