Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/45130
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorHernández García, Liliana Carolina-
dc.contributor.authorColorado Lopera, Henry Alonso-
dc.contributor.authorVidal Valencia, Julián-
dc.date.accessioned2025-02-21T20:13:39Z-
dc.date.available2025-02-21T20:13:39Z-
dc.date.issued2025-
dc.identifier.citationL. C. H. García, J. V. Valencia, y H. A. Colorado L, «Modeling an artificial neural network to estimate cement consumption in clayey waste-cement mixtures based on curing temperature, mechanical strength, and resilient modulus», Constr. Build. Mater., vol. 467, p. 140376, 2025, doi: https://doi.org/10.1016/j.conbuildmat.2025.140376.spa
dc.identifier.issn0950-0618-
dc.identifier.urihttps://hdl.handle.net/10495/45130-
dc.description.abstractABSTRACT: Seeking to address large-scale issues faced by many countries today, such as excessive energy consumption, global warming, and uncontrolled mining activities, this research repurposes clayey mining and excavation waste to design soil-cement mixtures for road construction. A total of 2026 data points from laboratory experimental tests were statistically analyzed using regression models and neural networks to evaluate the effect of curing temperature on compressive strength, indirect tensile strength, and resilient modulus. The study focused on three types of clayey waste mixed with high early-strength hydraulic cement (Type 1 Portland cement) after 7 days of curing. The samples were cured in three different chambers, each maintaining a constant temperature of 10, 28, and 40 ◦C for 7 days, simulating the most common road temperatures in Colombia. Results showed that temperature has a positive effect of 18 % on the resilient modulus, which could lead to cement savings in warm climates. Additionally, an artificial neural network model was developed, which can contribute to the construction and design of more sustainable and environmentally friendly geothermal pavements. The use of these models and networks not only facilitates the study of multiple variables but also optimizes materials and methods, aiming to reduce energy consumption and costs.spa
dc.format.extent17 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherElsevierspa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleModeling an artificial neural network to estimate cement consumption in clayey waste-cement mixtures based on curing temperature, mechanical strength, and resilient modulusspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupCCComposites (cements ceramics and composites)spa
dc.identifier.doi10.1016/j.conbuildmat.2025.140376-
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn1879-0526-
oaire.citationtitleConstruction and Building Materialsspa
oaire.citationstartpage1spa
oaire.citationendpage17spa
oaire.citationvolume467spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.publisher.placeGuildford, Inglaterraspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
dc.subject.decsInteligencia artificial-
dc.subject.decsArtificial Intelligence-
dc.subject.decsResiduos-
dc.subject.decsWaste Products-
dc.subject.lembRedes neurales (computadores)-
dc.subject.lembNeural networks (Computer science)-
dc.subject.lembCemento-
dc.subject.lembCement-
dc.subject.lembEstabilización de suelos-
dc.subject.lembSoil stabilization-
dc.subject.proposalClay soilspa
dc.subject.proposalClay wastespa
dc.description.researchgroupidCOL0099698spa
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D001185-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D014866-
dc.relation.ispartofjournalabbrevConstr. Build. Mater.spa
Aparece en las colecciones: Artículos de Revista en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
ColoradoHenry_2025_Modeling_Artificial_Neural.pdfArtículo de investigación1.11 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons