Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/45461
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorHernández Arango, Alejandro-
dc.contributor.authorArias, María Isabel-
dc.contributor.authorPérez, Viviana-
dc.contributor.authorChavarría, Luis Daniel-
dc.contributor.authorJaimes Barragán, Fabián Alberto-
dc.date.accessioned2025-03-11T19:56:37Z-
dc.date.available2025-03-11T19:56:37Z-
dc.date.issued2025-
dc.identifier.citationHernández-Arango, A., Arias, M.I., Pérez, V. et al. Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases. J Med Syst 49, 19 (2025). https://doi.org/10.1007/s10916-025-02140-zspa
dc.identifier.issn0148-5598-
dc.identifier.urihttps://hdl.handle.net/10495/45461-
dc.description.abstractABSTRACT: Decision-making in chronic diseases guided by clinical decision support systems that use models including multiple variables based on artificial intelligence requires scientific validation in different populations to optimize the use of limited human, financial, and clinical resources in healthcare systems worldwide. This cohort study evaluated three machine learning algo-rithms—XGBoost, Elastic Net logistic regression, and an Artificial Neural Network—to develop a prediction model for three outcomes: mortality, hospitalization, and emergency department visits. The objective was to build a clinical decision support system for patients with noncommunicable diseases treated at the Alma Mater Hospital complex in Medellín, Colombia. We collected 4845 electronic medical record entries from 5000 patients included in the study. The median age was 71.83 years, with 63.8% women and 29.7% receiving home care. The most prevalent medical conditions were diabetes (52.9%), hypertension (67.2%), dyslipidemia (57.3%), and COPD (19.4%). For mortality prediction, the Elastic Net logistic regression model achieved an AUCROC of 0.883 (95% CI: 0.848–0.917), the XGBoost model reached an AUCROC of 0.896 (95% CI: 0.865–0.927), and the Neural Network achieved 0.886 (95% CI: 0.853–0.916). For hospitalization, the Elastic Net model had an AUCROC of 0.952 (95% CI: 0.937–0.965), the XGBoost model achieved 0.963 (95% CI: 0.952–0.974), and the Neural Network scored 0.932 (95% CI: 0.915–0.948). For emergency department visits, the AUCROC values were 0.980 (95% CI: 0.971–0.987) for Elastic Net, 0.977 (95% CI: 0.967–0.986) for XGBoost, and 0.976 (95% CI: 0.968–0.982) for the neural network. A dashboard was developed to interact with an ensemble risk categorization segmenting patient risk in the cohort to aid in clinical decision-making. A clinical decision support system based on artificial intelligence using electronic medical records possibly can help segmenting the risk in populations with Noncommunicable Diseases for effective decision-making.spa
dc.format.extent14 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherSpringerspa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/co/*
dc.titlePrediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseasesspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupGrupo Académico de Epidemiología Clínicaspa
dc.identifier.doi10.1007/s10916-025-02140-z-
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn1573-689X-
oaire.citationtitleJournal of Medical Systemsspa
oaire.citationstartpage1spa
oaire.citationendpage13spa
oaire.citationvolume49spa
oaire.citationissue19spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by/4.0/spa
dc.publisher.placeNueva York, Estados Unidosspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
dc.subject.decsSistemas de Apoyo a Decisiones Clínicas - organización & administración-
dc.subject.decsDecision Support Systems, Clinical - organization & administration-
dc.subject.decsRegistros Electrónicos de Salud-
dc.subject.decsElectronic Health Records-
dc.subject.decsServicio de Urgencia en Hospital - estadística & datos numéricos-
dc.subject.decsEmergency Service, Hospital - statistics & numerical data-
dc.subject.decsHospitalización-
dc.subject.decsHospitalization-
dc.subject.decsModelos Logísticos-
dc.subject.decsLogistic Models-
dc.subject.decsAprendizaje Automático-
dc.subject.decsMachine Learning-
dc.subject.decsRedes Neurales de la Computación-
dc.subject.decsNeural Networks, Computer-
dc.subject.decsMedición de Riesgo - métodos-
dc.subject.decsRisk Assessment - methods-
dc.description.researchgroupidCOL0007121spa
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D020000-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D057286-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D004636-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D006760-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D016015-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D000069550-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D016571-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D018570-
dc.relation.ispartofjournalabbrevJ. Med. Syst.spa
Aparece en las colecciones: Artículos de Revista en Ciencias Médicas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
HernandezAlejandro_2025_Prediction_Risk_Clinical.pdfArtículo de investigación1.3 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons