Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/12835
Título : | SisFall : A Fall and Movement Dataset |
Autor : | López Hincapie, José David Vargas Bonilla, Jesús Francisco |
metadata.dc.subject.*: | Detección de caídas Servicios móviles de salud Acelerómetro triaxial Dispositivos portátiles |
Fecha de publicación : | 2017 |
Editorial : | MDPI |
Citación : | Sucerquia Vega, A., López Hincapie, J. D., and Vargas Bonilla, J. F. (2017). SisFall: A Fall and Movement Dataset. Sensors, 17(1), 1-14. https://doi.org/10.3390/s17010198 |
Resumen : | ABSTRACT: Research on fall and movement detection with wearable devices has witnessed promising growth. However, there are few publicly available datasets, all recorded with smartphones, which are insufficient for testing new proposals due to their absence of objective population, lack of performed activities, and limited information. Here, we present a dataset of falls and activities of daily living (ADLs) acquired with a self-developed device composed of two types of accelerometer and one gyroscope. It consists of 19 ADLs and 15 fall types performed by 23 young adults, 15 ADL types performed by 14 healthy and independent participants over 62 years old, and data from one participant of 60 years old that performed all ADLs and falls. These activities were selected based on a survey and a literature analysis. We test the dataset with widely used feature extraction and a simple to implement threshold based classification, achieving up to 96% of accuracy in fall detection. An individual activity analysis demonstrates that most errors coincide in a few number of activities where new approaches could be focused. Finally, validation tests with elderly people significantly reduced the fall detection performance of the tested features. This validates findings of other authors and encourages developing new strategies with this new dataset as the benchmark. |
ISSN : | 1424-8220 |
metadata.dc.identifier.doi: | 10.3390/s17010198 |
Aparece en las colecciones: | Artículos de Revista en Ingeniería |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
SucerquiaAngela_2017_Sisfallmovement.pdf | Artículo de investigación | 698.68 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons