Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/12835
Título : SisFall : A Fall and Movement Dataset
Autor : López Hincapie, José David
Vargas Bonilla, Jesús Francisco
metadata.dc.subject.*: Detección de caídas
Servicios móviles de salud
Acelerómetro triaxial
Dispositivos portátiles
Fecha de publicación : 2017
Editorial : MDPI
Citación : Sucerquia Vega, A., López Hincapie, J. D., and Vargas Bonilla, J. F. (2017). SisFall: A Fall and Movement Dataset. Sensors, 17(1), 1-14. https://doi.org/10.3390/s17010198
Resumen : ABSTRACT: Research on fall and movement detection with wearable devices has witnessed promising growth. However, there are few publicly available datasets, all recorded with smartphones, which are insufficient for testing new proposals due to their absence of objective population, lack of performed activities, and limited information. Here, we present a dataset of falls and activities of daily living (ADLs) acquired with a self-developed device composed of two types of accelerometer and one gyroscope. It consists of 19 ADLs and 15 fall types performed by 23 young adults, 15 ADL types performed by 14 healthy and independent participants over 62 years old, and data from one participant of 60 years old that performed all ADLs and falls. These activities were selected based on a survey and a literature analysis. We test the dataset with widely used feature extraction and a simple to implement threshold based classification, achieving up to 96% of accuracy in fall detection. An individual activity analysis demonstrates that most errors coincide in a few number of activities where new approaches could be focused. Finally, validation tests with elderly people significantly reduced the fall detection performance of the tested features. This validates findings of other authors and encourages developing new strategies with this new dataset as the benchmark.
ISSN : 1424-8220
metadata.dc.identifier.doi: 10.3390/s17010198
Aparece en las colecciones: Artículos de Revista en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
SucerquiaAngela_2017_Sisfallmovement.pdfArtículo de investigación698.68 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons