Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/23736
Título : A Developmental Systems Perspective on Epistasis : Computational Exploration of Mutational Interactions in Model Developmental Regulatory Networks
Autor : Gutiérrez Betancur, Jayson
metadata.dc.subject.*: Interacción de genes
Gene interaction
Drosophila melanogaster
http://aims.fao.org/aos/agrovoc/c_32461
http://aims.fao.org/aos/agrovoc/c_30543
Fecha de publicación : 2009
Editorial : Public Library of Science
Citación : Gutiérrez, J. (2009) A Developmental Systems Perspective on Epistasis: Computational Exploration of Mutational Interactions in Model Developmental Regulatory Networks. PLoS ONE 4(9): e6823. doi:10.1371/journal.pone.0006823
Resumen : ABSTRACT: The way in which the information contained in genotypes is translated into complex phenotypic traits (i.e. embryonic expression patterns) depends on its decoding by a multilayered hierarchy of biomolecular systems (regulatory networks). Each layer of this hierarchy displays its own regulatory schemes (i.e. operational rules such as +/2 feedback) and associated control parameters, resulting in characteristic variational constraints. This process can be conceptualized as a mapping issue, and in the context of highly-dimensional genotype-phenotype mappings (GPMs) epistatic events have been shown to be ubiquitous, manifested in non-linear correspondences between changes in the genotype and their phenotypic effects. In this study I concentrate on epistatic phenomena pervading levels of biological organization above the genetic material, more specifically the realm of molecular networks. At this level, systems approaches to studying GPMs are specially suitable to shed light on the mechanistic basis of epistatic phenomena. To this aim, I constructed and analyzed ensembles of highlymodular (fully interconnected) networks with distinctive topologies, each displaying dynamic behaviors that were categorized as either arbitrary or functional according to early patterning processes in the Drosophila embryo. Spatiotemporal expression trajectories in virtual syncytial embryos were simulated via reaction-diffusion models. My in silico mutational experiments show that: 1) the average fitness decay tendency to successively accumulated mutations in ensembles of functional networks indicates the prevalence of positive epistasis, whereas in ensembles of arbitrary networks negative epistasis is the dominant tendency; and 2) the evaluation of epistatic coefficients of diverse interaction orders indicates that, both positive and negative epistasis are more prevalent in functional networks than in arbitrary ones. Overall, I conclude that the phenotypic and fitness effects of multiple perturbations are strongly conditioned by both the regulatory architecture (i.e. pattern of coupled feedback structures) and the dynamic nature of the spatio-temporal expression trajectories displayed by the simulated networks.
metadata.dc.identifier.eissn: 1932-6203
metadata.dc.identifier.doi: 10.1371/journal.pone.0006823
Aparece en las colecciones: Artículos de Revista en Ciencias Exactas y Naturales

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
GutiérrezJayson_2009_DevelopmentalSystemsEpistasis.pdfArtículo de investigación896.42 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons