Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/18789
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.advisor | Orozco Arroyave, Juan Rafael | - |
dc.contributor.advisor | Nöth, Elmar | - |
dc.contributor.advisor | Bocklet, Tobias | - |
dc.contributor.author | Pérez Toro, Paula Andrea | - |
dc.date.accessioned | 2021-03-04T13:42:22Z | - |
dc.date.available | 2021-03-04T13:42:22Z | - |
dc.date.issued | 2021 | - |
dc.identifier.uri | http://hdl.handle.net/10495/18789 | - |
dc.description.abstract | ABSTRACT: Nowadays, the interest in the automatic analysis of speech and text in different scenarios have been increasing. Currently, acoustic analysis is frequently used to extract non-verbal information related to para-linguistic aspects such as articulation and prosody. The linguistic analysis focuses on capturing verbal information from written sources, which can be suitable to evaluate customer satisfaction, or in health-care applications to assess the state of patients under depression or other cognitive states. In the case of call-centers many of the speech recordings collected are related to the opinion of the customers in different industry sectors. Only a small proportion of these calls are evaluated, whereby these processes can be automated using acoustic and linguistic analysis. In the assessment of neuro-degenerative diseases such as Alzheimer's Disease (AD) and Parkinson's Disease (PD), the symptoms are progressive, directly linked to dementia, cognitive decline, and motor impairments. This implies a continuous evaluation of the neurological state since the patients become dependent and need intensive care, showing a decrease of the ability from individual activities of daily life. This thesis proposes methodologies for acoustic and linguistic analyses in different scenarios related to customer satisfaction, cognitive disorders in AD, and depression in PD. The experiments include the evaluation of customer satisfaction, the assessment of genetic AD, linguistic analysis to discriminate PD, depression assessment in PD, and user state modeling based on the arousal-plane for the evaluation of customer satisfaction, AD, and depression in PD. The acoustic features are mainly focused on articulation and prosody analyses, while linguistic features are based on natural language processing techniques. Deep learning approaches based on convolutional and recurrent neural networks are also considered in this thesis. | spa |
dc.format.extent | 151 | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.rights | Atribución-NoComercial-CompartirIgual (CC BY-NC-SA) | * |
dc.rights | info:eu-repo/semantics/openAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/2.5/co/ | * |
dc.title | Speech and natural language processing for the assessment of customer satisfaction and neuro-degenerative diseases | spa |
dc.type | info:eu-repo/semantics/masterThesis | spa |
dc.publisher.group | Grupo de Investigación en Telecomunicaciones Aplicadas (GITA) | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
thesis.degree.name | Magíster en Ingeniería de Telecomunicaciones | spa |
thesis.degree.level | Maestría | spa |
thesis.degree.discipline | Facultad de Ingeniería. Maestría en Ingeniería de Telecomunicaciones | spa |
thesis.degree.grantor | Universidad de Antioquia | spa |
dc.rights.creativecommons | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.local | Tesis/Trabajo de grado - Monografía - Maestría | spa |
dc.subject.unesco | Languages | - |
dc.subject.unesco | Lengua | - |
dc.subject.unesco | Speech | - |
dc.subject.unesco | Habla | - |
dc.subject.unesco | Oral expression | - |
dc.subject.unesco | Expresión oral | - |
dc.subject.unesco | Nervous system diseases | - |
dc.subject.unesco | Enfermedad del sistema nervioso | - |
dc.subject.unesco | Linguistics | - |
dc.subject.unesco | Lingüística | - |
dc.subject.proposal | Alzheimer's Disease | spa |
dc.subject.proposal | Customer Satisfaction | spa |
dc.subject.proposal | Deep Learning | spa |
dc.subject.proposal | Emotion Modeling | spa |
dc.subject.proposal | Machine Learning | spa |
dc.subject.proposal | Natural Language Processing | spa |
dc.subject.proposal | Parkinson's Disease | spa |
dc.subject.proposal | Speech Analysis | spa |
dc.subject.unescouri | http://vocabularies.unesco.org/thesaurus/concept308 | - |
dc.subject.unescouri | http://vocabularies.unesco.org/thesaurus/concept5828 | - |
dc.subject.unescouri | http://vocabularies.unesco.org/thesaurus/concept10648 | - |
dc.subject.unescouri | http://vocabularies.unesco.org/thesaurus/concept8193 | - |
dc.subject.unescouri | http://vocabularies.unesco.org/thesaurus/concept310 | - |
Aparece en las colecciones: | Maestrías de la Facultad de Ingeniería |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
PerezPaula_2021_SpeechNaturalLanguage.pdf | Tesis de Maestría | 10.37 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons