Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/18789
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorOrozco Arroyave, Juan Rafael-
dc.contributor.advisorNöth, Elmar-
dc.contributor.advisorBocklet, Tobias-
dc.contributor.authorPérez Toro, Paula Andrea-
dc.date.accessioned2021-03-04T13:42:22Z-
dc.date.available2021-03-04T13:42:22Z-
dc.date.issued2021-
dc.identifier.urihttp://hdl.handle.net/10495/18789-
dc.description.abstractABSTRACT: Nowadays, the interest in the automatic analysis of speech and text in different scenarios have been increasing. Currently, acoustic analysis is frequently used to extract non-verbal information related to para-linguistic aspects such as articulation and prosody. The linguistic analysis focuses on capturing verbal information from written sources, which can be suitable to evaluate customer satisfaction, or in health-care applications to assess the state of patients under depression or other cognitive states. In the case of call-centers many of the speech recordings collected are related to the opinion of the customers in different industry sectors. Only a small proportion of these calls are evaluated, whereby these processes can be automated using acoustic and linguistic analysis. In the assessment of neuro-degenerative diseases such as Alzheimer's Disease (AD) and Parkinson's Disease (PD), the symptoms are progressive, directly linked to dementia, cognitive decline, and motor impairments. This implies a continuous evaluation of the neurological state since the patients become dependent and need intensive care, showing a decrease of the ability from individual activities of daily life. This thesis proposes methodologies for acoustic and linguistic analyses in different scenarios related to customer satisfaction, cognitive disorders in AD, and depression in PD. The experiments include the evaluation of customer satisfaction, the assessment of genetic AD, linguistic analysis to discriminate PD, depression assessment in PD, and user state modeling based on the arousal-plane for the evaluation of customer satisfaction, AD, and depression in PD. The acoustic features are mainly focused on articulation and prosody analyses, while linguistic features are based on natural language processing techniques. Deep learning approaches based on convolutional and recurrent neural networks are also considered in this thesis.spa
dc.format.extent151spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.rightsAtribución-NoComercial-CompartirIgual (CC BY-NC-SA)*
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.titleSpeech and natural language processing for the assessment of customer satisfaction and neuro-degenerative diseasesspa
dc.typeinfo:eu-repo/semantics/masterThesisspa
dc.publisher.groupGrupo de Investigación en Telecomunicaciones Aplicadas (GITA)spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
thesis.degree.nameMagíster en Ingeniería de Telecomunicacionesspa
thesis.degree.levelMaestríaspa
thesis.degree.disciplineFacultad de Ingeniería. Maestría en Ingeniería de Telecomunicacionesspa
thesis.degree.grantorUniversidad de Antioquiaspa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.publisher.placeMedellín, Colombiaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.localTesis/Trabajo de grado - Monografía - Maestríaspa
dc.subject.unescoLanguages-
dc.subject.unescoLengua-
dc.subject.unescoSpeech-
dc.subject.unescoHabla-
dc.subject.unescoOral expression-
dc.subject.unescoExpresión oral-
dc.subject.unescoNervous system diseases-
dc.subject.unescoEnfermedad del sistema nervioso-
dc.subject.unescoLinguistics-
dc.subject.unescoLingüística-
dc.subject.proposalAlzheimer's Diseasespa
dc.subject.proposalCustomer Satisfactionspa
dc.subject.proposalDeep Learningspa
dc.subject.proposalEmotion Modelingspa
dc.subject.proposalMachine Learningspa
dc.subject.proposalNatural Language Processingspa
dc.subject.proposalParkinson's Diseasespa
dc.subject.proposalSpeech Analysisspa
dc.subject.unescourihttp://vocabularies.unesco.org/thesaurus/concept308-
dc.subject.unescourihttp://vocabularies.unesco.org/thesaurus/concept5828-
dc.subject.unescourihttp://vocabularies.unesco.org/thesaurus/concept10648-
dc.subject.unescourihttp://vocabularies.unesco.org/thesaurus/concept8193-
dc.subject.unescourihttp://vocabularies.unesco.org/thesaurus/concept310-
Aparece en las colecciones: Maestrías de la Facultad de Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
PerezPaula_2021_SpeechNaturalLanguage.pdfTesis de Maestría10.37 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons