Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/25346
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorOrozco Arroyave, Juan Rafael-
dc.contributor.authorCalvo Ariza, Nestor Rafael-
dc.date.accessioned2022-01-18T18:28:17Z-
dc.date.available2022-01-18T18:28:17Z-
dc.date.issued2021-
dc.identifier.urihttp://hdl.handle.net/10495/25346-
dc.description.abstractABSTRACT : Audio analysis is a topic of study that has gained momentum in the last decade, the growing information as well as the improvement in computational power has allowed more and more academic and industrial sectors to perform studies of audio signals which previously went unnoticed. With this type of analysis certain drawbacks arise, one of them is that in many cases the recording conditions will not be optimal to obtain a sample with "clean" information, because external factors affect or introduce noise to the sample. As a solution to this problem, multiple algorithms have been developed for audio cleaning, some of them require manual work that can be exhausting depending on the size and quantity of audios, and on the other hand there are techniques that use predictive models created with Machine or Deep Learning to perform the cleaning process in an automated way. Although these last techniques have solved the problem of doing this work manually, many of them are not user-friendly and require the user to have knowledge of the model created in order to make changes and experiment at ease, thus reducing the number of people who can make use of this technology. In this work a web application was created which allows to make use of a Deep Learning model called ORCA-CLEAN [23], created to perform audio cleaning for whales. and couple it in such a way that the user can perform audio cleaning without having knowledge of the model and just making use of his mouse and keyboard. The user can select multiple regions in the audio spectrogram in order to apply different types of parameters and make comparisons, as well as listen to the resulting audio(s) after applying the cleaning process. Finally, the user can download a zip folder containing images of the spectrograms of the regions before and after cleaning, as well as the cleaned audio(s).spa
dc.format.extent30spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.titleWeb application for animal audio noise reduction using the ORCA-CLEAN modelspa
dc.typeinfo:eu-repo/semantics/bachelorThesisspa
dc.publisher.groupGrupo de Investigación en Telecomunicaciones Aplicadas (GITA)spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
thesis.degree.nameIngeniero Electrónicospa
thesis.degree.levelPregradospa
thesis.degree.disciplineFacultad de Ingeniería. Ingeniería Electrónicaspa
thesis.degree.grantorUniversidad de Antioquiaspa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.publisher.placeMedellínspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.localTesis/Trabajo de grado - Monografía - Pregradospa
dc.subject.lembAnimal communication-
dc.subject.lembComunicación animal-
dc.subject.lembAnimal sounds-
dc.subject.lembSonidos animales-
dc.subject.lembMachine learning-
dc.subject.lembAprendizaje automático (inteligencia artificial)-
dc.subject.lembNoise control-
dc.subject.lembControl del ruido-
dc.subject.lembSound recordings-
dc.subject.lembGrabaciones sonoras-
dc.subject.lembSound production by animals-
dc.subject.lembProducción del sonido por animales-
dc.subject.proposalAplicaciones webspa
Aparece en las colecciones: Ingeniería Electrónica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
CalvoNestor_2021_NoiseReductionApplication.pdfTrabajo de grado de pregrado1.1 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons