Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/26678
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorSanz Vicario, José Luis-
dc.contributor.authorPulgarín Mosquera, Juan Felipe-
dc.date.accessioned2022-03-16T19:23:27Z-
dc.date.available2022-03-16T19:23:27Z-
dc.date.issued2020-
dc.identifier.urihttp://hdl.handle.net/10495/26678-
dc.description.abstractABSTRACT: In the present work, we have computed the entanglement between the electronic and nuclear motions in two molecular model systems: the one-dimensional hydrogen molecular ion (H2+) and the Shin-Metiu model, considering the molecules as a bipartite systems: electron and nuclear motion. For that purpose, we have computed the Born-Oppenheimer and non-Born-Oppenheimer (Born-Huang) wave function in terms of the Fourier Grid Hamiltonian basis that expands both the electronic and nuclear wave functions. Also, according to the Schmidt decomposition theorem for bipartite systems, widely used in quantum-information theory, there is a much shorter but equivalent expansion in terms of the Schmidt bases for the electronic and nuclear sub-spaces. In these models of distinguishable coupled particles we have shown that the entanglements contents do not increase monotonically with the excitation energy. In the hydrogen molecular ion and in the ShinMetiu model, the entanglements contents for each Born-Oppenheimer electro-nuclear state is quantified through the von-Neumann and linear entropies and we have shown that entanglement serves as a witness of distinguishability of nuclear states related to different Born-Oppenheimer molecular energy curves or electronic excitation modes.spa
dc.format.extent87spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.subject.lcshQuantum systems-
dc.subject.lcshQuantum entanglement-
dc.subject.lcshMolecules - Models-
dc.subject.lcshBorn-Oppenheimer approximation-
dc.subject.lcshCoherence (Nuclear physics)-
dc.titleEntanglement, coherence and correlation in atomic and molecular systemsspa
dc.typeinfo:eu-repo/semantics/bachelorThesisspa
dc.publisher.groupGrupo de Física Atómica y Molecularspa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
thesis.degree.nameFísicospa
thesis.degree.levelPregradospa
thesis.degree.disciplineFacultad de Ciencias Exactas y Naturales. Físicaspa
thesis.degree.grantorUniversidad de Antioquiaspa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.publisher.placeMedellín, Colombiaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.localTesis/Trabajo de grado - Monografía - Pregradospa
dc.subject.proposalBorn-Huang approximationspa
dc.subject.lcshurihttp://id.loc.gov/authorities/subjects/sh2013002642-
dc.subject.lcshurihttp://id.loc.gov/authorities/subjects/sh2011004527-
dc.subject.lcshurihttp://id.loc.gov/authorities/subjects/sh85027761-
dc.subject.lcshurihttp://id.loc.gov/authorities/subjects/sh85086598-
dc.subject.lcshurihttp://id.loc.gov/authorities/subjects/sh94002962-
Aparece en las colecciones: Física

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
PulgarinJuan_2020_EntanglementMolecularSystems.pdfTrabajo de grado de pregrado17.43 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons