Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/26790
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Nagar, Daya Krishna | - |
dc.contributor.author | Bedoya Valencia, Danilo | - |
dc.contributor.author | Gupta, Arjun Kumar | - |
dc.date.accessioned | 2022-03-22T21:24:23Z | - |
dc.date.available | 2022-03-22T21:24:23Z | - |
dc.date.issued | 2014 | - |
dc.identifier.citation | Nagar, D. K., Bedoya-Valencia, D., & Gupta, A. K. (2015). Bivariate Generalization of the Gauss Hypergeometric Distribution. Applied Mathematical Sciences, 9(51), 2531-2551. http://dx.doi.org/10.12988/ams.2015.52111 | spa |
dc.identifier.issn | 1312-885X | - |
dc.identifier.uri | http://hdl.handle.net/10495/26790 | - |
dc.description.abstract | ABSTRACT: The bivariate generalization of the Gauss hypergeometric distribution is defined by the probability density function proportional to x α1−1y α2−1 (1 − x − y) β−1 (1 + ξ1x + ξ2y) −γ , x > 0, y > 0, x + y < 1, where αi > 0, i = 1, 2, β > 0, −∞ < γ < ∞ and ξi > −1, i = 1, 2 are constants. In this article, we study several of its properties such as marginal and conditional distributions, joint moments and the coefficient of correlation. We compute the exact forms of R´enyi and Shannon entropies for this distribution. We also derive the distributions of X+Y , X/(X +Y ), V = X/Y and XY where X and Y follow a bivariate Gauss hypergeometric distribution. | spa |
dc.format.extent | 21 | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Hikari | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.rights | info:eu-repo/semantics/openAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/2.5/co/ | * |
dc.title | Bivariate generalization of the Gauss hypergeometric distribution | spa |
dc.type | info:eu-repo/semantics/article | spa |
dc.publisher.group | Análisis Multivariado | spa |
dc.identifier.doi | 10.12988/ams.2015.52111 | - |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
dc.identifier.eissn | 1314-7552 | - |
oaire.citationtitle | Applied Mathematical Sciences | spa |
oaire.citationstartpage | 2531 | spa |
oaire.citationendpage | 2551 | spa |
oaire.citationvolume | 9 | spa |
oaire.citationissue | 51 | spa |
dc.rights.creativecommons | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.publisher.place | Bulgaria | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/ART | spa |
dc.type.local | Artículo de investigación | spa |
dc.subject.lemb | Funciones | - |
dc.subject.lemb | Functions | - |
dc.subject.lemb | Funciones hipergeométricas | - |
dc.subject.lemb | Hypergeometric functions | - |
dc.subject.proposal | 62H15 | spa |
dc.subject.proposal | 62E15 | spa |
dc.description.researchgroupid | COL0000532 | spa |
dc.relation.ispartofjournalabbrev | Appl. Math. Sci. | spa |
Aparece en las colecciones: | Artículos de Revista en Ciencias Exactas y Naturales |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
NagarDaya_2014_BivariateGaussDistribution.pdf | Artículo de investigación | 699.12 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons