Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/26790
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorNagar, Daya Krishna-
dc.contributor.authorBedoya Valencia, Danilo-
dc.contributor.authorGupta, Arjun Kumar-
dc.date.accessioned2022-03-22T21:24:23Z-
dc.date.available2022-03-22T21:24:23Z-
dc.date.issued2014-
dc.identifier.citationNagar, D. K., Bedoya-Valencia, D., & Gupta, A. K. (2015). Bivariate Generalization of the Gauss Hypergeometric Distribution. Applied Mathematical Sciences, 9(51), 2531-2551. http://dx.doi.org/10.12988/ams.2015.52111spa
dc.identifier.issn1312-885X-
dc.identifier.urihttp://hdl.handle.net/10495/26790-
dc.description.abstractABSTRACT: The bivariate generalization of the Gauss hypergeometric distribution is defined by the probability density function proportional to x α1−1y α2−1 (1 − x − y) β−1 (1 + ξ1x + ξ2y) −γ , x > 0, y > 0, x + y < 1, where αi > 0, i = 1, 2, β > 0, −∞ < γ < ∞ and ξi > −1, i = 1, 2 are constants. In this article, we study several of its properties such as marginal and conditional distributions, joint moments and the coefficient of correlation. We compute the exact forms of R´enyi and Shannon entropies for this distribution. We also derive the distributions of X+Y , X/(X +Y ), V = X/Y and XY where X and Y follow a bivariate Gauss hypergeometric distribution.spa
dc.format.extent21spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherHikarispa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/co/*
dc.titleBivariate generalization of the Gauss hypergeometric distributionspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupAnálisis Multivariadospa
dc.identifier.doi10.12988/ams.2015.52111-
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn1314-7552-
oaire.citationtitleApplied Mathematical Sciencesspa
oaire.citationstartpage2531spa
oaire.citationendpage2551spa
oaire.citationvolume9spa
oaire.citationissue51spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by/4.0/spa
dc.publisher.placeBulgariaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
dc.subject.lembFunciones-
dc.subject.lembFunctions-
dc.subject.lembFunciones hipergeométricas-
dc.subject.lembHypergeometric functions-
dc.subject.proposal62H15spa
dc.subject.proposal62E15spa
dc.description.researchgroupidCOL0000532spa
dc.relation.ispartofjournalabbrevAppl. Math. Sci.spa
Aparece en las colecciones: Artículos de Revista en Ciencias Exactas y Naturales

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
NagarDaya_2014_BivariateGaussDistribution.pdfArtículo de investigación699.12 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons