Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/29735
Título : Weak and strong gravity effects in astrophysics and cosmology
Autor : Santa Vélez, Camilo
metadata.dc.contributor.advisor: Enea Romano, Antonio
metadata.dc.subject.*: Perturbation (Quantum dynamics)
Gravitational waves
Luminosity distance
Artificial Intelligence
Astrophysics
Cosmology
Deep learning
Aprendizaje profundo
Perturbación (Dinámica cuántica)
Inteligencia artificial
Astrofísica
Cosmología
Cosmological perturbation theory
Turn around radius
http://id.loc.gov/authorities/subjects/sh85100182
http://id.loc.gov/authorities/subjects/sh85056562
http://id.loc.gov/authorities/subjects/sh2003003637
http://id.loc.gov/authorities/subjects/sh85008180
http://id.loc.gov/authorities/subjects/sh85009032
http://id.loc.gov/authorities/subjects/sh85033169
http://id.nlm.nih.gov/mesh/D000077321
Fecha de publicación : 2022
Resumen : ABSTRACT: Gravity is fundamental to formulate the standard cosmological model and understand smaller-scale astrophysical processes. This thesis studies different problems involving weak and strong gravitational effects in astrophysics and cosmology. In the strong gravity regime, we use a neural network to reconstruct the parameters of a binary black hole merger from its gravitational wave signal. Effective one-body numerical relativity simulations are used to generate a template bank of gravitational waves spectrograms. This dataset is then used to train a neural network to estimate the masses of the black holes. In the weak gravity regime, we study static spherically symmetric (SSS) metrics as generalizations of the de Sitter metric and find their form as perturbations of the FRW Universe using gauge-invariant variables. We then apply these results to compute the turnaround radius (TAR) and the gravitational stability mass (GSM) to constrain scalar-tensor gravity theories with observational data. In the last part, we investigate the problem of reconstructing the density field from its weak lensing effects on the luminosity distance. First, we simulate many random configurations of cosmic structure, compute their effects on the luminosity distance using perturbation theory, and finally develop a neural network to reconstruct the density and velocity fields from the luminosity distance.
Aparece en las colecciones: Doctorados de la Facultad de Ciencias Exactas y Naturales

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
SantaCamilo_2021_WeakStrongGravity.pdfTesis doctoral1.74 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons