Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/29735
Título : | Weak and strong gravity effects in astrophysics and cosmology |
Autor : | Santa Vélez, Camilo |
metadata.dc.contributor.advisor: | Enea Romano, Antonio |
metadata.dc.subject.*: | Perturbation (Quantum dynamics) Gravitational waves Luminosity distance Artificial Intelligence Astrophysics Cosmology Deep learning Aprendizaje profundo Perturbación (Dinámica cuántica) Inteligencia artificial Astrofísica Cosmología Cosmological perturbation theory Turn around radius http://id.loc.gov/authorities/subjects/sh85100182 http://id.loc.gov/authorities/subjects/sh85056562 http://id.loc.gov/authorities/subjects/sh2003003637 http://id.loc.gov/authorities/subjects/sh85008180 http://id.loc.gov/authorities/subjects/sh85009032 http://id.loc.gov/authorities/subjects/sh85033169 http://id.nlm.nih.gov/mesh/D000077321 |
Fecha de publicación : | 2022 |
Resumen : | ABSTRACT: Gravity is fundamental to formulate the standard cosmological model and understand smaller-scale astrophysical processes. This thesis studies different problems involving weak and strong gravitational effects in astrophysics and cosmology. In the strong gravity regime, we use a neural network to reconstruct the parameters of a binary black hole merger from its gravitational wave signal. Effective one-body numerical relativity simulations are used to generate a template bank of gravitational waves spectrograms. This dataset is then used to train a neural network to estimate the masses of the black holes. In the weak gravity regime, we study static spherically symmetric (SSS) metrics as generalizations of the de Sitter metric and find their form as perturbations of the FRW Universe using gauge-invariant variables. We then apply these results to compute the turnaround radius (TAR) and the gravitational stability mass (GSM) to constrain scalar-tensor gravity theories with observational data. In the last part, we investigate the problem of reconstructing the density field from its weak lensing effects on the luminosity distance. First, we simulate many random configurations of cosmic structure, compute their effects on the luminosity distance using perturbation theory, and finally develop a neural network to reconstruct the density and velocity fields from the luminosity distance. |
Aparece en las colecciones: | Doctorados de la Facultad de Ciencias Exactas y Naturales |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
SantaCamilo_2021_WeakStrongGravity.pdf | Tesis doctoral | 1.74 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons