Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/30530
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorOrozco Arroyave, Juan Rafael-
dc.contributor.advisorPérez Toro, Paula Andrea-
dc.contributor.authorGuerrero Cristancho, Juan Sebastián-
dc.date.accessioned2022-09-08T22:40:38Z-
dc.date.available2022-09-08T22:40:38Z-
dc.date.issued2022-
dc.identifier.urihttps://hdl.handle.net/10495/30530-
dc.description.abstractABSTRACT : Parkinson’s Disease (PD) is one of the most common neurodegenerative diseases. Patients manifest a progressive degeneration of dopamine, which plays a key role in abilities such as the locomotion, cognitive capabilities, sleep regulation and mood. One of the symptoms of the disease is the progressive gait impairment, resting tremors, slowness of movement, shuffling steps, among others. There is interest among the scientific community to develop automatic classification systems to support the diagnosis. The goal is to properly discriminate the disease and to predict the neurological state of the patients. This work focuses on the use of Convolutional Auto-Encoders to obtain efficient representations from multi-channel gait signals from Smartphones and sensors to classify PD patients vs. Healthy subjects. The channels represent the acceleration in the 3-dimensional plane (X, Y, Z). The proposed experiments consist of three models using 64, 128, and 256-dimensional bottlenecks to compress the information of gait signals. The accuracy and unweighted average recall are used to evaluate the classification performance over the PC-GITA database, from which 38 controls and 38 subjects were used for training the neural networks, and 30 patients and healthy subjects were used as test dataset. The subjects were asked to perform the 4x10 gait task, which consists of four repetitions of walking for 10 meters, stop and perform a 180° turn. A Stratified 5-Fold-Cross-Validation strategy is used to evaluate the performance of a Support Vector Machine over the testing dataset. The results indicate that the 64-dimensional bottlenecks provide enough information to properly differentiate between patients and controls. The results report accuracy of up to 85%, and Unweighted average recall values of 93%. Additionally, the area under the ROC curve is reported for each fold. There is no variation in the results when considering gait signals with non-randomized and randomized channels. It is concluded that the methodology is suitable to classify patients vs. healthy subjects, despite of the different origins from the signals and the challenges that different sampling frequencies impose for such a methodology.spa
dc.format.extent38spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/co/*
dc.titleGait classification of parkinson’s disease patients using efficient representations from autoencodersspa
dc.typeinfo:eu-repo/semantics/bachelorThesisspa
dc.publisher.groupGrupo de Investigación en Telecomunicaciones Aplicadas (GITA)spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
thesis.degree.nameIngeniero Electrónicospa
thesis.degree.levelPregradospa
thesis.degree.disciplineFacultad de Ingeniería. Ingeniería Electrónicaspa
thesis.degree.grantorUniversidad de Antioquiaspa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.publisher.placeMedellín - Colombiaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.localTesis/Trabajo de grado - Monografía - Pregradospa
dc.subject.decsParkinson Disease-
dc.subject.decsEnfermedad de Parkinson-
dc.subject.lembMachine learning-
dc.subject.lembAprendizaje automático (Inteligencia artificial)-
dc.subject.lembNeural networks (Computer science)-
dc.subject.lembRedes neurales (computadores)-
Aparece en las colecciones: Ingeniería Electrónica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
GuerreroJuan_2022_ClassificationParkinsonPatients.pdfTrabajo de grado de pregrado3.11 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons