Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/32201
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorCossio Tejada, Pilar-
dc.contributor.advisorRestrepo Cardenas, Johans-
dc.contributor.advisorOchoa, Rodrigo-
dc.contributor.authorMuñoz Gomez, Kelly Yohana-
dc.date.accessioned2022-11-22T15:33:14Z-
dc.date.available2022-11-22T15:33:14Z-
dc.date.issued2022-
dc.identifier.urihttps://hdl.handle.net/10495/32201-
dc.description.abstractABSTRAC: Peptides are chemical entities composed of natural and non-natural amino acids that have been used successfully as drugs, vaccines, biomarkers, among others. However, these can be easily cleaved and degraded by proteases, where their breaking of a chemical bond in peptides gives smaller molecules or radicals, causing instability in some biological environments when we use peptides therapeutically or as medicines. One possible solution is the use of peptides with non-natural amino acids (NNAA). In the present study, we assessed the prediction of affinities in complexes between human Complement component 3 (C3c) protein bound to multiple compstatin peptide analogs with NNAAs. We used molecular dynamics simulations and six scoring functions to correlate the average score with the experimental binding data obtained from previous studies. Several correlation coefficients above 0.7 and one above 0.85 were detected, indicating an excellent correlation between these two variables. We found the highest Spearman correlation for the Nnscore and Cyscore scoring function, suggesting that these are the most adequate for ranking the binding of modified peptides to a protein target.spa
dc.format.extent64spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.subject.meshPeptides-
dc.subject.meshAmino acids-
dc.subject.meshComplement C3c-
dc.subject.meshMolecular dynamics simulation-
dc.titlePredicting the affinity of compstatin peptide with non-natural amino acids to human C3c protein by scoring molecular dynamics simulationsspa
dc.typeinfo:eu-repo/semantics/masterThesisspa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
thesis.degree.nameMaestría en Físicaspa
thesis.degree.levelMaestríaspa
thesis.degree.disciplineFacultad de Ciencias Exactas y Naturales. Maestría en Físicaspa
thesis.degree.grantorUniversidad de Antioquiaspa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.publisher.placeMedellín - Colombiaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.localTesis/Trabajo de grado - Monografía - Maestríaspa
dc.subject.decsPéptidos-
dc.subject.decsAminoácidos-
dc.subject.decsComplemento C3c-
dc.subject.decsSimulación de dinámica molecular-
dc.subject.meshurihttp://id.nlm.nih.gov/mesh/D010455-
dc.subject.meshurihttp://id.nlm.nih.gov/mesh/D000596-
dc.subject.meshurihttp://id.nlm.nih.gov/mesh/D015932-
dc.subject.meshurihttp://id.nlm.nih.gov/mesh/D056004-
Aparece en las colecciones: Maestrías de la Facultad de Ciencias Exactas y Naturales

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
MuñozKelly_2022_PredictingAffinityPeptide.pdfTesis de maestría15.54 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons