Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/33793
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorRestrepo Tangarife, Joel Esteban-
dc.contributor.authorJerbashian, Armen-
dc.date.accessioned2023-03-08T14:35:16Z-
dc.date.available2023-03-08T14:35:16Z-
dc.date.issued2017-
dc.identifier.citationJerbashian, Armen & Restrepo, Joel. (2017). A boundary property of some subclasses of functions of bounded type in the half-plane. Fractional Calculus and Applied Analysis. 20. 1531-1544. 10.1515/fca-2017-0080.spa
dc.identifier.issn1311-0454-
dc.identifier.urihttps://hdl.handle.net/10495/33793-
dc.description.abstractABSTRACT: The paper gives the construction of the half-plane analog of the part of the factorization theory of M. M. Djrbashian – V. S. Zakaryan, where Djrbashian’s generalized fractional integral was used to establish the descriptive representations and boundary properties of meromorphic in the unit disc functions of the classes N{ω} contained in the Nevanlinna class N of functions of bounded type. Some results of nearly the same type are obtained for several weighted classes of meromorphic in the upper half-plane functions with bounded Tsuji characteristics by application of the Laplace transform along with an Hadamard–Liouville type generalized integro-differential operator with an unbounded integration contour, which becomes the Liouville integro-differentiation in a particular case.spa
dc.format.extent14spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherInstitute of Mathematics & Informatics, Bulgarian Academy of Sciencesspa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/co/*
dc.titleA boundary property of some subclasses of functions of bounded type in the half-planespa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupModelación con Ecuaciones Diferencialesspa
dc.identifier.doi10.1515/fca-2017-0080-
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn1314-2224-
oaire.citationtitleFractional Calculus and Applied Analysisspa
oaire.citationstartpage1531spa
oaire.citationendpage1544spa
oaire.citationvolume20spa
oaire.citationissue6spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by/4.0/spa
dc.publisher.placeSofía, Bulgariaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
dc.subject.lembCálculo-
dc.subject.lembCalculus-
dc.subject.lembFunciones-
dc.subject.lembFunctions-
dc.subject.lembProblemas de valores de frontera-
dc.subject.lembBoundary value problems-
dc.subject.lembFactorización (finanzas)-
dc.subject.lembFactoring (finance)-
dc.subject.lembProblemas de valor límite-
dc.subject.lembBoundary value problems-
dc.subject.proposalCálculo fraccionariospa
dc.description.researchgroupidCOL0024365spa
dc.relation.ispartofjournalabbrevFract. Calc. Appl. Anal.spa
Aparece en las colecciones: Artículos de Revista en Ciencias Exactas y Naturales

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
JerbashianArmen_2017_ABoundaryPropertySome.pdfArtículo de investigación280.37 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons