Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/34432
Título : A multi-space sampling heuristic for the vehicle routing problem with stochastic demands
Autor : Villegas Ramírez, Juan Guillermo
Mendoza, Jorge E.
metadata.dc.subject.*: Programación heurística
Heuristic programming
Análisis estocástico
Stochastic analysis
Fecha de publicación : 2011
Editorial : Springer
Citación : Jorge E. Mendoza, Juan Villegas. A multi-space sampling heuristic for the vehicle routing problem with stochastic demands. 2011. <hal-00629457>
Resumen : ABSTRACT: The vehicle routing problem with stochastic demands consists in designing transportation routes of minimal expected cost to satisfy a set of customers with random demands of known probability distributions. This paper proposes a simple yet effective heuristic approach that uses randomized heuristics for the traveling salesman problem, a tour partitioning procedure, and a set partitioning formulation to sample the solution space and find high-quality solutions for the problem. Computational experiments on benchmark instances from the literature show that the proposed approach is competitive with the state-of-the-art algorithm for the problem in terms of both accuracy and efficiency. In experiments conducted on a set of 40 instances, the proposed approach unveiled four new best-known solutions (BKSs) and matched another 24. For the remaining 12 instances, the heuristic reported average gaps with respect to the BKS ranging from 0.69 to 0.15 % depending on its configuration.
metadata.dc.identifier.eissn: 1862-4480
ISSN : 1862-4472
metadata.dc.identifier.doi: 10.1007/s11590-012-0555-8
Aparece en las colecciones: Artículos de Revista en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
VillegaJuan_2011_A multi-space_Sampling_Heuristic.pdfArtículo de investigación491.88 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons