Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/34432
Título : | A multi-space sampling heuristic for the vehicle routing problem with stochastic demands |
Autor : | Villegas Ramírez, Juan Guillermo Mendoza, Jorge E. |
metadata.dc.subject.*: | Programación heurística Heuristic programming Análisis estocástico Stochastic analysis |
Fecha de publicación : | 2011 |
Editorial : | Springer |
Citación : | Jorge E. Mendoza, Juan Villegas. A multi-space sampling heuristic for the vehicle routing problem with stochastic demands. 2011. <hal-00629457> |
Resumen : | ABSTRACT: The vehicle routing problem with stochastic demands consists in designing transportation routes of minimal expected cost to satisfy a set of customers with random demands of known probability distributions. This paper proposes a simple yet effective heuristic approach that uses randomized heuristics for the traveling salesman problem, a tour partitioning procedure, and a set partitioning formulation to sample the solution space and find high-quality solutions for the problem. Computational experiments on benchmark instances from the literature show that the proposed approach is competitive with the state-of-the-art algorithm for the problem in terms of both accuracy and efficiency. In experiments conducted on a set of 40 instances, the proposed approach unveiled four new best-known solutions (BKSs) and matched another 24. For the remaining 12 instances, the heuristic reported average gaps with respect to the BKS ranging from 0.69 to 0.15 % depending on its configuration. |
metadata.dc.identifier.eissn: | 1862-4480 |
ISSN : | 1862-4472 |
metadata.dc.identifier.doi: | 10.1007/s11590-012-0555-8 |
Aparece en las colecciones: | Artículos de Revista en Ingeniería |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
VillegaJuan_2011_A multi-space_Sampling_Heuristic.pdf | Artículo de investigación | 491.88 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons