Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/36252
Título : Quadrature hybrid optimization for ALMA bands 2 and 3 : particle swarm algorithm for millimeter and sub-millimeter microwave devices optimization
Autor : Cárdenas Lopera, Jorge Hernán
metadata.dc.contributor.advisor: Chaparro, Germán
Restrepo, Óscar
metadata.dc.subject.*: Radio astronomy
Directional couplers
Radio telescopes
Microwave devices
Computational physics
Radioastronomía
Radiotelescopios
Atacama Large Millimeter Array (ALMA)
Quadrature hybrid
Optimization algorithms
Amplitude imbalance
Particle Swarm Optimization (PSO)
http://id.loc.gov/authorities/subjects/sh85110440
http://id.loc.gov/authorities/subjects/sh85038264
http://id.loc.gov/authorities/subjects/sh85110583
http://id.loc.gov/authorities/subjects/sh85084958
http://id.loc.gov/authorities/subjects/sh2022007579
Fecha de publicación : 2023
Resumen : ABSTRACT: We introduce a novel optimization method based on the evolutionary algorithm Particle Swarm Optimization (PSO) to enhance the electromagnetic performance of quadrature hybrid designs. Optimization and simulations batches were conducted using a fully tuned and validated version of the algorithm, for the design of quadrature hybrids intended to operate ALMA (Atacama Large Millimeter Array) Band 2 (67-90 GHz), Band 3 (84-116 GHz), and Band 2+3 (67-116 GHz). Thus, we present quadrature hybrid designs which are optimized to operate in ALMA Band 3 (84-116 GHz) with respect to their operational requirements for the scattering parameters and amplitude imbalance. Furthermore, the resulting designs take into account machining constraints related to cost and feasibility requirements. Finally, this work provides a method that can be easily extended to optimize other microwave devices and waveguides for radio astronomy applications, with the benefit of speeding up the design process as well as reducing the computational costs.
Aparece en las colecciones: Maestrías de la Facultad de Ciencias Exactas y Naturales

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
CardenasJorge_2023_AlmaHybridOptimization.pdfTesis de maestría35.72 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons