Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/37406
Título : | Automated software for counting and measuring Hyalella genus using artificial intelligence |
Autor : | Pineda Alarcón, Ludy Yanith Zuluaga Montoya, Maycol Esteban Ruíz González, Santiago Fernández Mc Cann, David Stephen Vélez Macías, Fabio de Jesús Aguirre Ramírez, Nestor Jaime Puerta Quintana, Yarin Tatiana Cañón Barriga, Julio Eduardo |
metadata.dc.subject.*: | Aprendizaje Profundo Deep Learning Procesamiento de Imagen Asistido por Computador Image Processing, Computer-Assisted Macroinvertebrados Macroinvertebrates Morfología animal Animal morphology Alometría Allometry http://aims.fao.org/aos/agrovoc/c_10d271a5 http://aims.fao.org/aos/agrovoc/c_421 http://aims.fao.org/aos/agrovoc/c_24962 |
Fecha de publicación : | 2023 |
Editorial : | Springer |
Citación : | Pineda-Alarcón, L., Zuluaga, M., Ruíz, S. et al. Automated software for counting and measuring Hyalella genus using artificial intelligence. Environ Sci Pollut Res (2023). https://doi.org/10.1007/s11356-023-30835-8 |
Resumen : | ABSTRACT: Amphipods belonging to the Hyalella genus are macroinvertebrates that inhabit aquatic environments. They are of particular interest in areas such as limnology and ecotoxicology, where data on the number of Hyalella individuals and their allometric measurements are used to assess the environmental dynamics of aquatic ecosystems. In this study, we introduce HyACS, a software tool that uses a model developed with the YOLOv3's architecture to detect individuals, and digital image processing techniques to extract morphological metrics of the Hyalella genus. The software detects body metrics of length, arc length, maximum width, eccentricity, perimeter, and area of Hyalella individuals, using basic imaging capture equipment. The performance metrics indicate that the model developed can achieve high prediction levels, with an accuracy above 90% for the correct identification of individuals. It can perform up to four times faster than traditional visual counting methods and provide precise morphological measurements of Hyalella individuals, which may improve further studies of the species populations and enhance their use as bioindicators of water quality. |
metadata.dc.identifier.eissn: | 1614-7499 |
ISSN : | 0944-1344 |
metadata.dc.identifier.doi: | 10.1007/s11356-023-30835-8 |
Aparece en las colecciones: | Artículos de Revista en Ingeniería |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
PinedaLudy_2023_Automated_Software.pdf | Artículo de investigación | 1.7 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons