Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/41650
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorLópez Hincapié, José David-
dc.contributor.authorLittle, Simon-
dc.contributor.authorBonaiuto, James-
dc.contributor.authorS. Meyer, Sofie-
dc.contributor.authorBestmann, Sven-
dc.contributor.authorBarnes, Gareth-
dc.date.accessioned2024-08-30T22:32:34Z-
dc.date.available2024-08-30T22:32:34Z-
dc.date.issued2018-
dc.identifier.citationLittle, S., Bonaiuto, J., Meyer, S. S., Lopez, J., Bestmann, S., & Barnes, G. (2018). Quantifying the performance of MEG source reconstruction using resting state data. NeuroImage, 181, 453–460. https://doi.org/10.1016/j.neuroimage.2018.07.030spa
dc.identifier.issn1053-8119-
dc.identifier.urihttps://hdl.handle.net/10495/41650-
dc.description.abstractABSTRACT: In magnetoencephalography (MEG) research there are a variety of inversion methods to transform sensor data into estimates of brain activity. Each new inversion scheme is generally justified against a specific simulated or task scenario. The choice of this scenario will however have a large impact on how well the scheme performs. We describe a method with minimal selection bias to quantify algorithm performance using human resting state data. These recordings provide a generic, heterogeneous, and plentiful functional substrate against which to test different MEG recording and reconstruction approaches. We used a Hidden Markov model to spatio-temporally partition data into self-similar dynamic states. To test the anatomical precision that could be achieved, we then inverted these data onto libraries of systematically distorted subject-specific cortical meshes and compared the quality of the fit using cross validation and a Free energy metric. This revealed which inversion scheme was able to identify the least distorted (most accurate) anatomical models, and allowed us to quantify an upper bound on the mean anatomical distortion accordingly. We used two resting state datasets, one recorded with head-casts and one without. In the head-cast data, the Empirical Bayesian Beamformer (EBB) algorithm showed the best mean anatomical discrimination (3.7mm) compared with Minimum Norm/LORETA (6.0mm) and Multiple Sparse Priors (9.4mm). This pattern was replicated in the second (conventional dataset) although with a marginally poorer (non-significant) prediction of the missing (cross-validated) data. Our findings suggest that the abundant resting state data now commonly available could be used to refine and validate MEG source reconstruction methods and/or recording paradigms.spa
dc.format.extent8 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherElsevierspa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/co/*
dc.titleQuantifying the performance of MEG source reconstruction using resting state dataspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupSistemas Embebidos e Inteligencia Computacional (SISTEMIC)spa
dc.identifier.doi10.1016/j.neuroimage.2018.07.030-
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn1095-9572-
oaire.citationtitleNeuroImagespa
oaire.citationstartpage453spa
oaire.citationendpage460spa
oaire.citationvolume181spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by/4.0/spa
dc.publisher.placeOrlando, Estados Unidosspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
dc.subject.decsDiagnóstico por Imagen-
dc.subject.decsDiagnostic Imaging-
dc.subject.decsMagnetoencefalografía-
dc.subject.decsMagnetoencephalography-
dc.subject.decsCorteza Cerebral-
dc.subject.decsCerebral Cortex-
dc.subject.decsNeuroimagen Funcional-
dc.subject.decsFunctional Neuroimaging-
dc.subject.decsProcesamiento de Imagen Asistido por Computador-
dc.subject.decsImage Processing, Computer-Assisted-
dc.subject.decsImagen por Resonancia Magnética-
dc.subject.decsMagnetic Resonance Imaging-
dc.subject.decsModelos Anatómicos-
dc.subject.decsModels, Anatomic-
dc.subject.decsModelos Teóricos-
dc.subject.decsModels, Theoretical-
dc.subject.decsDescanso-
dc.subject.decsRest-
dc.description.researchgroupidCOL0010717spa
dc.subject.meshurihttp://id.nlm.nih.gov/mesh/D003952-
dc.subject.meshurihttp://id.nlm.nih.gov/mesh/D015225-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D002540-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D059907-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D007091-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D008279-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D008953-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D008962-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D012146-
dc.relation.ispartofjournalabbrevNeuroimagespa
Aparece en las colecciones: Artículos de Revista en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
LittleSimon_2018_Quantifying_Performance.pdfArtículo de investigación1.55 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons