Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/42032
Título : | Cyto-Feature Engineering: A Pipeline for Flow Cytometry Analysis to Uncover Immune Populations and Associations with Disease |
Autor : | Rojas López, Mauricio Henao Tamayo, Marcela Isabel Obregón Henao, Andrés Karger, Burton Fox, Amy Dutt, Taru S. |
metadata.dc.subject.*: | Biomarcadores Biomarkers Células Sanguíneas Blood Cells Citodiagnóstico Cytodiagnosis Susceptibilidad a Enfermedades Disease Susceptibility Citometría de Flujo Flow Cytometry Inmunofenotipificación Immunophenotyping Mycobacterium tuberculosis Tuberculosis Ratones Ratones https://id.nlm.nih.gov/mesh/D015415 https://id.nlm.nih.gov/mesh/D001773 https://id.nlm.nih.gov/mesh/D003581 https://id.nlm.nih.gov/mesh/D004198 https://id.nlm.nih.gov/mesh/D005434 https://id.nlm.nih.gov/mesh/D016130 https://id.nlm.nih.gov/mesh/D009169 Fenotipo Phenotype https://id.nlm.nih.gov/mesh/D010641 https://id.nlm.nih.gov/mesh/D051379 |
Fecha de publicación : | 2020 |
Editorial : | Nature Publishing Group |
Citación : | Fox A, Dutt TS, Karger B, Rojas M, Obregón-Henao A, Anderson GB, Henao-Tamayo M. Cyto-Feature Engineering: A Pipeline for Flow Cytometry Analysis to Uncover Immune Populations and Associations with Disease. Sci Rep. 2020 May 6;10(1):7651. doi: 10.1038/s41598-020-64516-0. |
Resumen : | ABSTRACT:Flow cytometers can now analyze up to 50 parameters per cell and millions of cells per sample; however, conventional methods to analyze data are subjective and time-consuming. To address these issues, we have developed a novel flow cytometry analysis pipeline to identify a plethora of cell populations efficiently. Coupled with feature engineering and immunological context, researchers can immediately extrapolate novel discoveries through easy-to-understand plots. The R-based pipeline uses Fluorescence Minus One (FMO) controls or distinct population differences to develop thresholds for positive/negative marker expression. The continuous data is transformed into binary data, capturing a positive/negative biological dichotomy often of interest in characterizing cells. Next, a filtering step refines the data from all identified cell phenotypes to populations of interest. The data can be partitioned by immune lineages and statistically correlated to other experimental measurements. The pipeline's modularity allows customization of statistical testing, adoption of alternative initial gating steps, and incorporation of other datasets. Validation of this pipeline through manual gating of two datasets (murine splenocytes and human whole blood) confirmed its accuracy in identifying even rare subsets. Lastly, this pipeline can be applied in all disciplines utilizing flow cytometry regardless of cytometer or panel design. The code is available at https://github.com/aef1004/cyto-feature_engineering. |
metadata.dc.identifier.eissn: | 2045-2323 |
metadata.dc.identifier.doi: | 10.1038/s41598-020-64516-0 |
Aparece en las colecciones: | Artículos de Revista en Ciencias Médicas |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
RojasMauricio_2020_Cyto_Feature_Engineering.pdf | Artículo de investigación | 4.77 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons