Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/44146
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorRodríguez López, Martha Lucía-
dc.contributor.authorTobón Vallejo, Diana Patricia-
dc.contributor.authorMúnera Ramírez, Danny Alexandro-
dc.date.accessioned2024-12-17T17:02:59Z-
dc.date.available2024-12-17T17:02:59Z-
dc.date.issued2025-
dc.identifier.issn2543-1536-
dc.identifier.urihttps://hdl.handle.net/10495/44146-
dc.description.abstractABSTRACT: Introducing the Industrial Internet of Things (IIoT) into traditional industrial processes has marked a new era of enhanced connectivity and productivity. By integrating advanced sensors, communication technologies, and data analysis, IIoT enables real-time monitoring, proactive maintenance, and increased operational efficiency. However, this increased complexity and interconnectivity also introduce new challenges in maintaining system dependability and safety. Considering these issues, this work presents an IIoT Anomaly Classification Framework designed to detect and categorize anomalies such as failures and attacks. The research addresses the critical need for robust anomaly detection and classification in IIoT systems by providing a comprehensive and scalable solution adaptable to various industrial contexts. The framework comprises two main components: an anomaly detection model and an anomaly classification model. The anomaly detection model operates unsupervised, continuously monitoring system data to identify deviations from normal behavior patterns. At the same time, the anomaly classification model categorizes these anomalies based on historical data using machine learning algorithms. The proposed framework has been tested in a realistic IIoT environment, demonstrating its effectiveness and practicality. During the cross-validation process, a precision of 0.95, recall of 0.88, and F1-score equal to 0.91 were obtained. This research contributes significantly to IIoT, offering a valuable tool for improving industrial operations and laying the groundwork for future anomaly classification and system resilience advancements.spa
dc.format.extent19 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherElsevierspa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.lcshDetección de anomalías (Seguridad informática)-
dc.subject.lcshAnomaly detection (Computer security)-
dc.subject.lcshContext-aware computing-
dc.titleA framework for anomaly classification in Industrial Internet of Things systemsspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupIntelligent Information Systems Lab.spa
dc.publisher.groupGrupo de Investigación en Telecomunicaciones Aplicadas (GITA)spa
dc.identifier.doi10.1016/j.iot.2024.101446-
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn2542-6605-
oaire.citationtitleInternet of Thingsspa
oaire.citationstartpage1spa
oaire.citationendpage19spa
oaire.citationvolume29spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.publisher.placeÁmsterdam, Países Bajosspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
dc.subject.decsInternet de las Cosas-
dc.subject.decsInternet of Things-
dc.subject.lembClasificación-
dc.subject.lembClassification-
dc.subject.lembTecnología de las comunicaciones-
dc.subject.lembCommunication technology-
dc.subject.lcshurihttp://id.loc.gov/authorities/subjects/sh2005007675-
dc.subject.lcshurihttp://id.loc.gov/authorities/subjects/sh2008007436-
dc.description.researchgroupidCOL0025934spa
dc.description.researchgroupidCOL0044448spa
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D000080487-
dc.relation.ispartofjournalabbrevInternet Things J.spa
Aparece en las colecciones: Artículos de Revista en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
RodriguezMartha_2025_Framework_Anomaly_Classification.pdfArtículo de investigación2.79 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons