Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/44146
Título : A framework for anomaly classification in Industrial Internet of Things systems
Autor : Rodríguez López, Martha Lucía
Tobón Vallejo, Diana Patricia
Múnera Ramírez, Danny Alexandro
metadata.dc.subject.*: Detección de anomalías (Seguridad informática)
Anomaly detection (Computer security)
Context-aware computing
Internet de las Cosas
Internet of Things
Clasificación
Classification
Tecnología de las comunicaciones
Communication technology
http://id.loc.gov/authorities/subjects/sh2005007675
http://id.loc.gov/authorities/subjects/sh2008007436
https://id.nlm.nih.gov/mesh/D000080487
Fecha de publicación : 2025
Editorial : Elsevier
Resumen : ABSTRACT: Introducing the Industrial Internet of Things (IIoT) into traditional industrial processes has marked a new era of enhanced connectivity and productivity. By integrating advanced sensors, communication technologies, and data analysis, IIoT enables real-time monitoring, proactive maintenance, and increased operational efficiency. However, this increased complexity and interconnectivity also introduce new challenges in maintaining system dependability and safety. Considering these issues, this work presents an IIoT Anomaly Classification Framework designed to detect and categorize anomalies such as failures and attacks. The research addresses the critical need for robust anomaly detection and classification in IIoT systems by providing a comprehensive and scalable solution adaptable to various industrial contexts. The framework comprises two main components: an anomaly detection model and an anomaly classification model. The anomaly detection model operates unsupervised, continuously monitoring system data to identify deviations from normal behavior patterns. At the same time, the anomaly classification model categorizes these anomalies based on historical data using machine learning algorithms. The proposed framework has been tested in a realistic IIoT environment, demonstrating its effectiveness and practicality. During the cross-validation process, a precision of 0.95, recall of 0.88, and F1-score equal to 0.91 were obtained. This research contributes significantly to IIoT, offering a valuable tool for improving industrial operations and laying the groundwork for future anomaly classification and system resilience advancements.
metadata.dc.identifier.eissn: 2542-6605
ISSN : 2543-1536
metadata.dc.identifier.doi: 10.1016/j.iot.2024.101446
Aparece en las colecciones: Artículos de Revista en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
RodriguezMartha_2025_Framework_Anomaly_Classification.pdfArtículo de investigación2.79 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons