Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/16421
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorMuñoz Galeano, Nicolas-
dc.contributor.authorBetancur Herrera, David Esteban-
dc.date.accessioned2020-08-24T16:48:09Z-
dc.date.available2020-08-24T16:48:09Z-
dc.date.issued2020-
dc.identifier.urihttp://hdl.handle.net/10495/16421-
dc.description.abstractRESUMEN: Trabajo en investigacion sobre solucion de ecuaciones diferenciales de Riemann-Liouville y Caputo. Publicado en revista ELSEVIER.spa
dc.description.abstractABSTRACT: In this paper, a numerical method is developed to obtain a solution of Caputo’s and Riemann-Liouville’s Fractional Differential Equations (CFDE and RLFDE). Scientific literature review shows that some numerical methods solve CFDE and there is only one paper that numerically solves RLFDE. Nevertheless, their solution is limited or the Fractional Differential Equation (FDE) to be solved is not in the most general form. To be best of the author’s knowledge, the proposed method is presented as the first method that numerically solves RLFDE which includes multi-order fractional derivatives and variable coefficients. The method converts the RLFDE or CFDE to be solved into an algebraic equation. Each Riemann-Liouville’s or Caputo’s Fractional Derivative (RLFD and CFD), derived from the RLFDE or CFDE respectively, is conveniently written as a set of substitution functions and an integral equation. The algebraic equation, the sets of substitution functions and the integral equations are discretized; and then solved using arrays. Some examples are provided for comparing the obtained numerical results with the results of other papers (when available) and exact solutions. It is demonstrated that the method is accurate and easy to implement, being presented as a powerful tool to solve not only FDE but also a wide range of differential and integral equations.spa
dc.format.extent16spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)*
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleA numerical method for solving Caputo’s and Riemann-Liouville’s fractional differential equations which includes multi-order fractional derivatives and variable coefficientsspa
dc.typeinfo:eu-repo/semantics/masterThesisspa
dc.publisher.groupGrupo de Manejo Eficiente de la Energía (GIMEL)spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
thesis.degree.nameMagíster en Ingenieríaspa
thesis.degree.levelMaestríaspa
thesis.degree.disciplineFacultad de Ingeniería. Maestría en Ingenieríaspa
thesis.degree.grantorUniversidad de Antioquiaspa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.publisher.placeMedellín, Colombiaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.localTesis/Trabajo de grado - Monografía - Maestríaspa
dc.subject.unescoEquations-
dc.subject.unescoEcuación-
dc.subject.unescoNumerical analysis-
dc.subject.unescoAnálisis numérico-
dc.subject.unescoScientific information systems-
dc.subject.unescoSistema de información científica-
dc.subject.proposalFractional differential equiationsspa
dc.subject.proposalRiemann-Liouvillespa
dc.subject.unescourihttp://vocabularies.unesco.org/thesaurus/concept8945-
dc.subject.unescourihttp://vocabularies.unesco.org/thesaurus/concept2250-
dc.subject.unescourihttp://vocabularies.unesco.org/thesaurus/concept3777-
Aparece en las colecciones: Maestrías de la Facultad de Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
BetancurDavid_2020_NumericalMethodSolving.pdfTesis de maestria1.22 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons