Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/20659
Título : A machine learning methodology for land use/land cover classification in tropical areas using medium resolution satellite imagery, case: Colombia
Autor : Ceballos Arroyo, Alberto Mario
metadata.dc.contributor.advisor: Ramos Pollán, Raul
metadata.dc.subject.*: Remote sensing
Teledetección
Machine learning
Aprendizaje electrónico
Imágenes por satélites
Satellite imagery
Redes de neuronas
Neural networks
Tratamiento de imágenes
Image processing
Deep Learning
Sentinel-2
Convolutional Neural Network
Satellite Imagery
http://aims.fao.org/aos/agrovoc/c_49834
http://aims.fao.org/aos/agrovoc/c_37359
http://aims.fao.org/aos/agrovoc/c_36761
http://aims.fao.org/aos/agrovoc/c_37467
http://vocabularies.unesco.org/thesaurus/concept1557
Fecha de publicación : 2021
Resumen : ABSTRACT : In this work, we first present a methodology for preparing 10 m to 60 m spatial resolution Sentinel-1, Sentinel-2, and ALOS DSM imagery of forest/grassland areas in Colombia to train a DeepLabV3+ convolutional neural network model. Our preprocessing pipeline for the Sentinel-2 imagery comprises cloud and shadow removal, atmospheric correction, and topographical correction, resulting in mostly cloud-free mosaics of tropical areas. At first, we train the network on very low spatial resolution (500 m) labels of the Colombian Amazonas region resampled to 10 m (+100000 samples after augmentation). Then, we fine-tune the network on medium spatial resolution data (30 m) of northern Antioquia, also resampled to 10 m, resulting in faster convergence and higher accuracy despite the limited number of labelled samples (~5000 samples after augmentation). Our results validate recent proposals where low spatial resolution data is used for training neural networks, and motivate us to keep exploring this line of research.
metadata.dc.relatedidentifier.url: https://drive.google.com/file/d/1uYiQiuiUTjwVbnYwZTNRQJpLWR-XFYtc/view?usp=sharing
Aparece en las colecciones: Especializaciones de la Facultad de Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Ceballos_Alberto_2021_ML_LULC_Colombia.pdfTrabajo de grado de especialización2.02 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons