Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/28956
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorMúnera Ramírez, Danny Alexandro-
dc.contributor.authorDuque Gallego, Jonathan-
dc.date.accessioned2022-06-03T19:45:39Z-
dc.date.available2022-06-03T19:45:39Z-
dc.date.issued2022-
dc.identifier.urihttp://hdl.handle.net/10495/28956-
dc.description.abstractABSTRACT : The Quadratic Assignment Problem (QAP) is one of the most challenging combinatorial optimization problems with many real-life applications. Multiple methods have been created to solve QAP, exact and approximate methods, among others. Meta- heuristics are a subset of approximative methods which have shown to be very efficient in solving QAP. Their behavior can be controlled by a set of parameters. Currently, the best solvers are based on hybrid and parallel metaheuristics. However, the design of parallel hybrid methods requires even more the fine tuning of a larger number of parameters. The parameter setting problem (PSP) is the task of finding the correct values of the metaheuristic parameters that results in the best possible performance. It is possible to identify four main ways for solving the PSP, these are: Parameter Tuning Strategies, Parameter Control Strategies, Instance-specific Parameter Tuning Strategies and HyperHeuristics. Several methods for solving the PSP have been proposed. However, there is a need for parameter control strategies for single-solution metaheuristics, more notorious in parallel hybrid metaheuristics. To solve this problem, we have proposed PACAS, a framework to configure the PArameter Control Adaptation for Single solution metaheuristics in a parallel hybrid solver for the efficient solution of combinatorial optimization problems. We proposed a Java implementation of framework J-PACAS, which implemented the functionality for solving the QAP. Our implementation uses three popular metaheuristics applied to QAP: the Ro- bust Tabu Search, the Extremal Optimization method and a simple Multi-start Local Search. J-PACAS also supplies three different strategies to perform the adaptation of the parameters. We present the results obtained by executing an experimental evaluation on a set of very difficult instances of QAPLIB. We explore different parameter control strategies, with different parallel configurations (independent or cooperative). We compare the best J-PACAS configuration identified in the experimental evaluation against a competitive state-of-the-art parameter control method, finding that our implementation presents a similar performance in small instances and a better performance in hard instances of the QAPLIB benchmark.spa
dc.format.extent85spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.rightsinfo:eu-repo/semantics/embargoedAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.titleParameter Control Strategies of Parallel Hybrid Metaheuristics Applied to the Quadratic Assignment Problemspa
dc.title.alternativeEstrategias de Control de parámetros de metaheurísticas híbridas paralelas aplicadas al problema de asignación cuadráticaspa
dc.typeinfo:eu-repo/semantics/masterThesisspa
dc.publisher.groupGrupo de Investigación en Telecomunicaciones Aplicadas (GITA)spa
dc.description.noteTESIS CON DISTINCIÓN: Cum Laude (Meritoria)spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_f1cfspa
thesis.degree.nameMagíster en Ingenieríaspa
thesis.degree.levelMaestríaspa
thesis.degree.disciplineFacultad de Ingeniería. Maestría en Ingenieríaspa
thesis.degree.grantorUniversidad de Antioquiaspa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.publisher.placeMedellín - Colombiaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.localTesis/Trabajo de grado - Monografía - Maestríaspa
dc.subject.unescoMétodo heurístico (enseñanza)-
dc.subject.unescoHeuristic method (teaching)-
dc.subject.unescoOptimización-
dc.subject.unescoOptimization-
dc.subject.lembProgramación paralela (computadores electrónicos)-
dc.subject.lembParallel programming (computer science)-
dc.subject.proposalMetaheuristicspa
dc.subject.proposalHybrid Metaheuristicspa
dc.subject.proposalParameter Control Strategiesspa
dc.subject.proposalDynamic Parameter Adaptionspa
dc.subject.proposalQuadratic Assignment Problemspa
dc.subject.proposalMetaheurísticaspa
dc.subject.proposalMetaheurística híbridaspa
dc.subject.unescourihttp://vocabularies.unesco.org/thesaurus/concept9232-
dc.subject.unescourihttp://vocabularies.unesco.org/thesaurus/concept6659-
dc.relatedidentifier.urlhttps://github.com/JonathanDuque/QAPMetaheuristic/tree/frameworkspa
dc.relatedidentifier.urlhttps://link.springer.com/chapter/10.1007/978-3-030-85672-4_22spa
Aparece en las colecciones: Maestrías de la Facultad de Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
DuqueJonathan_2022_ParallelHybridMetaheuristic.pdfTesis de maestría2.24 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons