Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/30178
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorLondoño Montoya, Cesar David-
dc.contributor.authorCano Quintero, Juan Bernardo-
dc.contributor.authorVelilla Hernández, Esteban-
dc.date.accessioned2022-08-24T20:33:38Z-
dc.date.available2022-08-24T20:33:38Z-
dc.date.issued2022-
dc.identifier.citationC. D. Londoño, J. B. Cano, and E. Velilla, “Capacitive tracer design to mitigate incomplete I-V curves in outdoor tests,” Sol. Energy, vol. 243, pp. 361–369, 2022, doi: https://doi.org/10.1016/j.solener.2022.08.021.spa
dc.identifier.issn0038-092X-
dc.identifier.urihttps://hdl.handle.net/10495/30178-
dc.description.abstractABSTRACT: The capacitance technique is the most straightforward and low-cost technique to trace the I-V curve of photovoltaic (PV) modules. Nevertheless, the sweep speed and number of samples to measure the I-V curve depend on the device under test (DUT), capacitance size, switching dynamic, lighting conditions, Etc. Therefore, two performance indexes were proposed to evaluate the I-V curve quality. The indexes were estimated from a circuital model considering the transient capacitance charging process as a function of the target irradiance levels and parameters of the DUT and tracer. In this way, a capacitance range is estimated to mitigate the likelihood of measuring incomplete curves in the Isc and Voc regions. Finally, the capacitance sizing design in terms of both indexes for monitoring PV technologies was validated in outdoor tests.spa
dc.format.extent9spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherElsevierspa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleCapacitive tracer design to mitigate incomplete I-V curves in outdoor testsspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupCentro de Investigación Innovación y Desarrollo de Materiales (CIDEMAT)spa
dc.publisher.groupGrupo de Manejo Eficiente de la Energía (GIMEL)spa
dc.identifier.doi10.1016/j.solener.2022.08.021.-
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.citationtitleSolar Energyspa
oaire.citationstartpage361spa
oaire.citationendpage369spa
oaire.citationvolume243spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.publisher.placeÁmsterdam, Países Bajosspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
dc.subject.proposalCapacitance sizingspa
dc.subject.proposalCapacitive tracerspa
dc.subject.proposalI-V curvesspa
dc.subject.proposalOutdoor testsspa
dc.subject.proposalPhotovoltaic devicespa
dc.description.researchgroupidCOL0010477spa
dc.description.researchgroupidCOL0007927spa
Aparece en las colecciones: Artículos de Revista en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
CanoJuan_2022_Capacitive-Tracer-Design-Solener.pdfArtículo de revista6.65 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons