Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/34247
Título : End-to-End Parkinson’s Disease Detection Using a Deep Convolutional Recurrent Network
Autor : Ríos Urrego, Cristian David
Moreno Acevedo, Santiago Andrés
Nöth, Elmar
Orozco Arroyave, Juan Rafael
metadata.dc.subject.*: Parkinson Disease
Enfermedad de Parkinson
Speech Recognition Software
Software de Reconocimiento del Habla
Memoria a Corto Plazo
Memory, Short-Term
Redes neurales (computadores)
Neural networks (Computer science)
Fecha de publicación : 2022
Editorial : Springer
Citación : Ríos-Urrego, C.D., Moreno-Acevedo, S.A., Nöth, E., Orozco-Arroyave, J.R. (2022). End-to-End Parkinson’s Disease Detection Using a Deep Convolutional Recurrent Network. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds) Text, Speech, and Dialogue. TSD 2022. Lecture Notes in Computer Science(), vol 13502. Springer, Cham. https://doi.org/10.1007/978-3-031-16270-1_27
Resumen : ABSTRACT : Deep Learning (DL) has enabled the development of accurate computational models to evaluate and monitor the neurological state of different disorders including Parkinson’s Disease (PD). Although researchers have used different DL architectures including Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) with Long Short-Term Memory (LSTM) units, fully connected networks, combinations of them, and others, but few works have correctly analyzed and optimized the input size of the network and how the network processes the information. This study proposes the classification of patients suffering from PD vs. healthy subjects using a 1D CNN followed by an LSTM. We show how the network behaves when its input and the kernel size in different layers are modified. In addition, we evaluate how the network discriminates between PD patients and healthy controls based on several speech tasks. The fusion of tasks yielded the best results in the classification experiments and showed promising results when classifying patients in different stages of the disease, which suggests the introduced approach is suitable to monitor the disease progression.
metadata.dc.identifier.eissn: 1611-3349
ISBN : 978-3-031-16270-1
ISSN : 0302-9743
metadata.dc.identifier.doi: 10.1007/978-3-031-16270-1_27
Aparece en las colecciones: Documentos de conferencias en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
RiosCristian_2022_EndtoEndParkinsonsDisease.pdfDocumento de conferencia1.29 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons