Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/34831
Título : Novel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniques
Autor : Cárdenas Torres, Andrés Mauricio
Uribe Pérez, Juliana
Font Llagunes, Josep M.
Hernández Valdivieso, Alher Mauricio
Plata Contreras, Jesús Alberto
metadata.dc.subject.*: Amputados
Amputees
Miembros Artificiales
Artificial Limbs
Teorema de Bayes
Bayes Theorem
Fenómenos Biomecánicos
Biomechanical Phenomena
Extremidades
Extremities
Marcha
Gait
Diseño de Prótesis
Prosthesis Design
Transfemoral amputees
Ground reaction force
Neural networks
Support Vector Machine
Fecha de publicación : 2023
Editorial : Elsevier
Citación : Cárdenas AM, Uribe J, Font-Llagunes JM, Hernández AM, Plata JA. Novel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniques. Gait Posture. 2023 May;102:125-131. doi: 10.1016/j.gaitpost.2023.03.020.
Resumen : ABSTRACT: Background: The prosthetic alignment procedure considers biomechanical, anatomical and comfort characteristics of the amputee to achieve an acceptable gait. Prosthetic malalignment induces long-term disease. The assessment of alignment is highly variable and subjective to the experience of the prosthetist, so the use of machine learning could assist the prosthetist during the judgment of optimal alignment. Research objective: To assist the prosthetist during the assessment of prosthetic alignment using a new computational protocol based on machine learning. Methods: Sixteen transfemoral amputees were recruited for training and validation of the alignment protocol. Four misalignments and one nominal alignment were performed. Eleven prosthetic limb ground reaction force parameters were recorded. A support vector machine with a Gaussian kernel radial basis function and a Bayesian regularization neural network were trained to predict the alignment condition, as well as the magnitude and angle of required to align the prosthesis correctly. The alignment protocol was validated by one junior and one senior prosthetist during the prosthetic alignment of two transfemoral amputees. Results: The support vector machine-based model detected the nominal alignment 92.6 % of the time. The neural network recovered 94.11 % of the angles needed to correct the prosthetic misalignment with a fitting error of 0.51◦. During the validation of the alignment protocol, the computational models and the prosthetists agreed on the alignment assessment. The gait quality evaluated by the prosthetists reached a satisfaction level of 8/10 for the first amputee and 9.6/10 for the second amputee. Importance: The new computational prosthetic alignment protocol is a tool that helps the prosthetist during the prosthetic alignment procedure thereby decreasing the likelihood of gait deviations and musculoskeletal diseases associated with misalignments and consequently improving the amputees-prosthesis adherence.
metadata.dc.identifier.eissn: 1879-2219
ISSN : 0966-6362
metadata.dc.identifier.doi: 10.1016/j.gaitpost.2023.03.020
Aparece en las colecciones: Artículos de Revista en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Cardenas_Andres_2023_NovelComputationalProtocol.pdfArtículo de investigación2.59 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons