Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/34949
Título : Predicting multidimensional poverty with machine learning algorithms : an open data source approach using spatial data
Autor : Muñetón Santa, Guberney
Manrique Ruiz, Luis Carlos
metadata.dc.subject.*: Multidimensional poverty index
Spatial analysis
Poverty
Machine learning
Indice de pobreza multidimensional
Pobreza
Análisis espacial
Medellín, Colombia
Fecha de publicación : 2023
Editorial : MDPI
Resumen : ABSTRACT: This paper presents a methodology to estimate the multidimensional poverty index using spatial data at the street block level. The data used in this study were obtained from Open Street Maps and ESA’s land use cover, which are freely available sources of spatial information. The study employs five machine-learning algorithms, including Catboost, Lightboost, and Random Forest, to estimate the multidimensional poverty index with spatial granularity. The results indicate that these models achieve promising performance in predicting poverty levels in Medellín, Colombia. The results showed that the Random Forest algorithm achieved the highest performance, with an MAE of 0.07504. Furthermore, the spatial distribution of the multidimensional poverty estimate was highly correlated with the true values of the distribution. This work contributes to predicting multidimensional poverty by demonstrating the potential of machine learning algorithms to utilize accessible spatial data. By providing evidence of the feasibility of estimating poverty levels at a granular spatial level, this methodology offers a powerful tool for policymakers to make poverty social interventions with low-cost evidence. Furthermore, this study has important implications for poverty eradication efforts in developing countries, where access to reliable data remains challenging.
metadata.dc.identifier.eissn: 2076-0760
Aparece en las colecciones: Artículos de Revista en Estudios Regionales

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
MuñetonGuberney_2023_PredictingMultidimensionalPoverty.pdf37.1 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons