Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/35466
Título : Anomaly classification in industrial Internet of things: A review
Autor : Rodríguez López, Martha Lucía
Múnera Ramírez, Danny Alexandro
Tobón Vallejo, Diana Patricia
metadata.dc.subject.*: Anomaly detection (Computer security)
Context-aware computing
Detección de anomalías (Seguridad informática)
Internet de las Cosas
Internet of Things
http://id.loc.gov/authorities/subjects/sh2005007675
http://id.loc.gov/authorities/subjects/sh2008007436
Fecha de publicación : 2023
Editorial : Elsevier
Citación : M. Rodríguez, D. P. Tobón, y D. Múnera, «Anomaly classification in industrial Internet of things: A review», Intell. Syst. with Appl., vol. 18, p. 200232, 2023, doi: https://doi.org/10.1016/j.iswa.2023.200232.
Resumen : ABSTRACT: The fourth industrial revolution (Industry 4.0) has the potential to provide real-time, secure, and autonomous manufacturing environments. The Industrial Internet of Things (IIoT) is a powerful tool to make this promise a reality because it can provide enhanced wireless connectivity for data collection and processing in interconnected plants. Implementing IIoT systems entails using heterogeneous technologies, which collect incomplete, unstructured, redundant, and noisy data. This condition raises security flaws and data collection issues that affect the data quality of the systems. One effective way to identify poor-quality data is through anomaly detection systems, which provide specific information that helps to decide whether a device is malfunctioning, a critical event is occurring, or the system's security is being breached. Using early anomaly detection mechanisms prevents the IIoT system from being influenced by anomalies in decision-making. Identifying the origin of the anomaly (e.g., event, failure, or attack) supports the user in making effective decisions about handling the data or identifying the device that exhibits abnormal behavior. However, implementing anomaly detection systems is not easy since various factors must be defined, such as what method to use for the best performance. What information must we process to detect and classify anomalies? Which devices have to be monitored to detect anomalies? Which device of the IIoT system will be in charge of executing the anomaly detection algorithm? Hence, in this paper, we performed a state-of-the-art review, including 99 different articles aiming to identify the answer of various authors to these questions. We also highlighted works on IIoT anomaly detection and classification, used methods, and open challenges. We found that automatic anomaly classification in IIoT is an open research topic, and additional information from the context of the application is rarely used to facilitate anomaly detection.
metadata.dc.identifier.eissn: 2667-3053
metadata.dc.identifier.doi: 10.1016/j.iswa.2023.200232
Aparece en las colecciones: Artículos de Revista en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
RodriguezMartha_2023_Anomaly_Classification.pdfArtículo de investigación1.08 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons