Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/35604
Título : Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM
Autor : López, José David
Friston, Karl J.
Espinosa Oviedo, Jairo José
Litvak, Vladimir
Barnes, Gareth Robert
metadata.dc.subject.*: Algoritmos
Algorithms
Inteligencia Artificial
Artificial Intelligence
Teorema de Bayes
Bayes Theorem
Electroencefalografía - Métodos
Electroencephalography- Métodos
Reproducibilidad de los Resultados
Reproducibility of Results
MEG/EEG inverse problem
Fecha de publicación : 2014
Editorial : Elsevier
Citación : López, J. D., Litvak, V., Espinosa, J. J., Friston, K., & Barnes, G. R. (2014). Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM. NeuroImage, 84, 476–487. https://doi.org/10.1016/j.neuroimage.2013.09.002
Resumen : ABSTRACT: The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in terms of the variational Free energy—an approximation to the marginal likelihood or evidence of the solution. In this manuscript, we revisit the algorithm for MEG/EEG source reconstruction with a view to providing a didactic and practical guide. The aim is to promote and help standardise the development and consolidation of other schemes within the same framework. We describe the implementation in the Statistical Parametric Mapping (SPM) software package, carefully explaining each of its stages with the help of a simple simulated data example. We focus on the Multiple Sparse Priors (MSP) model, which we compare with the well-known Minimum Norm and LORETA models, using the negative variational Free energy for model comparison. The manuscript is accompanied by Matlab scripts to allow the reader to test and explore the underlying algorithm
ISSN : 1053-8119
metadata.dc.identifier.doi: 10.1016/j.neuroimage.2013.09.002
Aparece en las colecciones: Artículos de Revista en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
LopezDavid_2013_AlgorithmicProceduresBayesian.pdfArtículo de investigación1.43 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons