Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/37286
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Rodiño Montoya, Mary Luz | - |
dc.contributor.author | Cadavid Salazar, Paula Andrea | - |
dc.contributor.author | Rodríguez, Pablo Martín | - |
dc.date.accessioned | 2023-11-13T01:12:07Z | - |
dc.date.available | 2023-11-13T01:12:07Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Paula Cadavid, Mary Luz Rodiño Montoya & Pablo M. Rodriguez (2020) Characterization theorems for the spaces of derivations of evolution algebras associated to graphs, Linear and Multilinear Algebra, 68:7, 1340-1354, DOI: 10.1080/03081087.2018.1541962 | spa |
dc.identifier.issn | 0308-1087 | - |
dc.identifier.uri | https://hdl.handle.net/10495/37286 | - |
dc.description.abstract | ABSTRACT: It is well-known that the space of derivations of n-dimensional evolution algebras with non-singular matrices is zero. On the other hand, the space of derivations of evolution algebras with matrices of rank n−1 have also been completely described in the literature. In this work, we provide a complete description of the space of derivations of evolution algebras associated to graphs, depending on the twin partition of the graph. For graphs without twin classes with at least three elements, we prove that the space of derivations of the associated evolution algebra is zero. Moreover, we describe the spaces of derivations for evolution algebras associated to the remaining families of finite graphs. It is worth pointing out that our analysis includes examples of finite dimensional evolution algebras with matrices of any rank. | spa |
dc.format.extent | 15 | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Taylor & Francis | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.rights | info:eu-repo/semantics/openAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | * |
dc.title | Characterization theorems for the spaces of derivations of evolution algebras associated to graphs | spa |
dc.type | info:eu-repo/semantics/article | spa |
dc.publisher.group | Álgebra U de A | spa |
dc.identifier.doi | 10.1080/03081087.2018.1541962 | - |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
dc.identifier.eissn | 1563-5139 | - |
oaire.citationtitle | Linear and Multilinear Algebra | spa |
oaire.citationstartpage | 1341 | spa |
oaire.citationendpage | 1354 | spa |
oaire.citationvolume | 68 | spa |
oaire.citationissue | 7 | spa |
dc.rights.creativecommons | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
oaire.fundername | Universidad de Antioquia | spa |
oaire.fundername | São Paulo Research Foundation | spa |
oaire.fundername | National Council for Scientific and Technological Development | spa |
dc.publisher.place | Londres, Inglaterra | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/ART | spa |
dc.type.local | Artículo de investigación | spa |
dc.subject.lemb | Ecuaciones de evolución | - |
dc.subject.lemb | Evolution equations | - |
dc.subject.lemb | Teoría de grafos | - |
dc.subject.lemb | Graph theory | - |
dc.subject.lemb | Álgebra | - |
dc.subject.lemb | Algebra | - |
dc.description.researchgroupid | COL0086896 | spa |
oaire.awardnumber | 2016/11648-0, 2017/19433-5, 2017/10555-0 | spa |
oaire.awardnumber | 304676/2016-0 | spa |
dc.relation.ispartofjournalabbrev | Linear Multilinear Algebra | spa |
oaire.funderidentifier.ror | RoR:03bp5hc83 | - |
oaire.funderidentifier.ror | RoR:02ddkpn78 | - |
oaire.funderidentifier.ror | RoR:03swz6y49 | - |
Aparece en las colecciones: | Artículos de Revista en Ciencias Exactas y Naturales |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
RodiñoLuzMarina_2020_CharacterizationTheoremsSpaces.pdf | Artículo de investigación | 1.51 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons