Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/37306
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorBedoya Caro, Iván Darío-
dc.contributor.authorCadavid, Francisco Javier-
dc.contributor.authorSaxena, Samveg-
dc.contributor.authorDibble, Robert W.-
dc.date.accessioned2023-11-13T23:52:19Z-
dc.date.available2023-11-13T23:52:19Z-
dc.date.issued2012-
dc.identifier.citationBedoya, Iván & Cadavid, Francisco & Saxena, Samveg & Dibble, Robert & Aceves, S.M. & Flowers, Daniel. (2012). A Sequential Chemical Kinetics-CFD-Chemical Kinetics Methodology to Predict HCCI Combustion and Main Emissions. SAE Technical Paper Series. 2012-01-1119. 10.4271/2012-01-1119.spa
dc.identifier.issn0148-7191-
dc.identifier.urihttps://hdl.handle.net/10495/37306-
dc.description.abstractABSTRACT: This study presents the development of a new HCCI simulation methodology. The proposed method is based on the sequential coupling of CFD analysis prior to autoignition, followed by multi-zone chemical kinetics analysis of the combustion process during the closed valve period. The methodology is divided into three steps: 1) a 1-zone chemical kinetic model (Chemkin Pro) is used to determine either the intake conditions at IVC to achieve a desired ignition timing or the ignition timing corresponding with given IVC conditions, 2) the ignition timing and IVC conditions are used as input parameters in a CFD model (Fluent 6.3) to calculate the charge temperature profile and mass distribution prior to autoignition, and 3) the temperature profile and mass distribution are fed into a multi-zone chemical kinetic model (Chemkin Pro) to determine the main combustion characteristics. Different numbers of zones have been tested in the multi-zone step to determine the effectiveness of the general methodology. 40 zones are needed to achieve acceptable thermal stratification resolution to accurately predict peak heat release rates, peak pressures rise rates and ringing intensity. However, a simplified 12-zone reduced model is developed and validated to study combustion variables. Simulation results for the main combustion variables and emissions are compared with experimental results from a multicylinder HCCI engine fueled with biogas (60% CH4 + 40% CO2), and operating at different intake conditions. Comparisons between the proposed numerical methodology and experimental results show good agreement for power output (measured as IMEPg), indicated efficiency, burn duration, peak pressure, individual ringing intensity, and HC and NOx emissions. CO emissions are very sensitive to the input parameters of the 12-zone reduced model. However, when the peak temperature after ignition of boundary layer zones is properly handled; CO emissions are reasonably well predicted. According to the results, the methodology can successfully predict combustion parameters and emissions for HCCI engines in which the fuel and air are well mixed prior to ignition. Compared with previous sequential methodologies, the method proposed here allows for reduced number of zones, more uniform temperature profiles prior to ignition, more accurate estimation of mass located in each zone, reduced computing time and more accurate predictions of peak heat release rates, peak pressure rise rates, and ringing intensity.spa
dc.format.extent22spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherSAE Internationalspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/2.5/co/*
dc.titleA sequential chemical kinetics-CFD-chemical kinetics methodology to predict HCCI combustion and main emissionsspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupCiencia y Tecnología del Gas y Uso Racional de la Energía (GASURE)spa
dc.identifier.doi10.4271/2012-01-1119-
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn0096-5170-
oaire.citationtitleSAE Technical Papersspa
oaire.citationstartpage1spa
oaire.citationendpage22spa
oaire.citationvolume2012- 01-1119spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.publisher.placeEstados Unidosspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
dc.subject.lembMonóxido de carbono-
dc.subject.lembCarbon monoxide-
dc.subject.lembDinámica de fluidos-
dc.subject.lembFluid dynamics-
dc.subject.proposalHCCI engines (Homogeneous charge compression ignition)spa
dc.subject.proposalIgnition timingspa
dc.subject.proposalCombustion and combustion processesspa
dc.subject.proposalEmisionesspa
dc.subject.proposalSimulation and modelingspa
dc.subject.proposalEmissionsspa
dc.description.researchgroupidCOL0040402spa
Aparece en las colecciones: Artículos de Revista en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
BedoyaIvan_2012_SequentialChemicalKinetics.pdfArtículo de investigación763.7 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons