Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/37580
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.advisor | Ochoa Gomez, John Fredy | - |
dc.contributor.author | Henao Isaza, Veronica | - |
dc.date.accessioned | 2023-12-13T16:07:17Z | - |
dc.date.available | 2023-12-13T16:07:17Z | - |
dc.date.issued | 2023 | - |
dc.identifier.uri | https://hdl.handle.net/10495/37580 | - |
dc.description.abstract | ABSTRACT : Alzheimer's disease (AD) poses a significant challenge in Colombia due to the growing aging population. Detecting early signs of cognitive alterations is crucial, and electroencephalography (EEG) has emerged as a valuable tool for studying AD-related brain activity. However, challenges exist in obtaining comparable and high-quality EEG recordings. Standardized data preprocessing pipelines and harmonization efforts, such as the Brain Imaging Data Structure (BIDS) format, play a vital role in facilitating data integration and sharing. The project focused on organizing multi-site EEG data using the EEG-BIDS framework, promoting localization, accessibility, and interoperability. Open-access databases were utilized to investigate the generalizability of EEG and machine learning (ML) analysis, highlighting the need for data standardization and harmonization. A processing pipeline (Sovaharmony) with normalization and harmonization stages enabled the integration of diverse cohorts (datasets) and optimization of information extraction. Machine learning models were employed for AD risk classification using non-invasive EEG biomarkers. Harmonization of data from multiple cohorts was crucial for increasing sample size, improving statistical power, and identifying consistent features or biomarkers across cohorts. The project aimed to develop a robust and generalizable machine learning model by harmonizing cohorts using a larger and more diverse dataset and thereby improving accuracy. This project made significant contributions to dementia research by developing a comprehensive approach for data acquisition, processing, harmonization, and machine learning-based risk classification using EEG technology. The standardized pipelines, data harmonization, and machine learning techniques were emphasized as critical components in advancing AD research and maximizing the value of EEG data. Further research should focus on replicating the findings on larger cohorts, using techniques like the introduced in the current project, and exploring the application of machine learning models to other non-invasive biomarkers, ultimately validating the accuracy and reliability of AD classification. | spa |
dc.format.extent | 262 | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.rights | info:eu-repo/semantics/openAccess | spa |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.title | Machine Learning model for the classification of individuals at risk of dementia type Alzheimer from multimodal databases of EEG and clinical information | spa |
dc.title.alternative | Modelo de Machine Learning para la clasificación de individuos con riesgo de demencia tipo Alzheimer a partir de bases de datos multimodales de EEG e información clínica | spa |
dc.type | info:eu-repo/semantics/masterThesis | spa |
dc.publisher.group | Grupo Neuropsicología y Conducta | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
thesis.degree.name | Magister en Ingeniería | spa |
thesis.degree.level | Maestría | spa |
thesis.degree.discipline | Facultad de Ingeniería. Maestría en Ingeniería | spa |
thesis.degree.grantor | Universidad de Antioquia | spa |
dc.rights.creativecommons | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.local | Tesis/Trabajo de grado - Monografía - Maestría | spa |
dc.subject.decs | Enfermedad de Alzheimer | - |
dc.subject.decs | Alzheimer Disease | - |
dc.subject.decs | Electroencefalografía | - |
dc.subject.decs | Electroencephalography | - |
dc.subject.lemb | Aprendizaje automático (inteligencia artificial) | - |
dc.subject.lemb | Machine learning | - |
dc.subject.proposal | Preprocessing pipeline | spa |
dc.description.researchgroupid | COL0007551 | spa |
Aparece en las colecciones: | Maestrías de la Facultad de Ingeniería |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
HenaoIsazaVeronica_ML_Classification_EEG_2023.pdf | Tesis de maestría | 5.05 MB | Adobe PDF | Visualizar/Abrir |
slide.pdf | Anexo | 17.6 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons