Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/37580
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorOchoa Gomez, John Fredy-
dc.contributor.authorHenao Isaza, Veronica-
dc.date.accessioned2023-12-13T16:07:17Z-
dc.date.available2023-12-13T16:07:17Z-
dc.date.issued2023-
dc.identifier.urihttps://hdl.handle.net/10495/37580-
dc.description.abstractABSTRACT : Alzheimer's disease (AD) poses a significant challenge in Colombia due to the growing aging population. Detecting early signs of cognitive alterations is crucial, and electroencephalography (EEG) has emerged as a valuable tool for studying AD-related brain activity. However, challenges exist in obtaining comparable and high-quality EEG recordings. Standardized data preprocessing pipelines and harmonization efforts, such as the Brain Imaging Data Structure (BIDS) format, play a vital role in facilitating data integration and sharing. The project focused on organizing multi-site EEG data using the EEG-BIDS framework, promoting localization, accessibility, and interoperability. Open-access databases were utilized to investigate the generalizability of EEG and machine learning (ML) analysis, highlighting the need for data standardization and harmonization. A processing pipeline (Sovaharmony) with normalization and harmonization stages enabled the integration of diverse cohorts (datasets) and optimization of information extraction. Machine learning models were employed for AD risk classification using non-invasive EEG biomarkers. Harmonization of data from multiple cohorts was crucial for increasing sample size, improving statistical power, and identifying consistent features or biomarkers across cohorts. The project aimed to develop a robust and generalizable machine learning model by harmonizing cohorts using a larger and more diverse dataset and thereby improving accuracy. This project made significant contributions to dementia research by developing a comprehensive approach for data acquisition, processing, harmonization, and machine learning-based risk classification using EEG technology. The standardized pipelines, data harmonization, and machine learning techniques were emphasized as critical components in advancing AD research and maximizing the value of EEG data. Further research should focus on replicating the findings on larger cohorts, using techniques like the introduced in the current project, and exploring the application of machine learning models to other non-invasive biomarkers, ultimately validating the accuracy and reliability of AD classification.spa
dc.format.extent262spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.titleMachine Learning model for the classification of individuals at risk of dementia type Alzheimer from multimodal databases of EEG and clinical informationspa
dc.title.alternativeModelo de Machine Learning para la clasificación de individuos con riesgo de demencia tipo Alzheimer a partir de bases de datos multimodales de EEG e información clínicaspa
dc.typeinfo:eu-repo/semantics/masterThesisspa
dc.publisher.groupGrupo Neuropsicología y Conductaspa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
thesis.degree.nameMagister en Ingenieríaspa
thesis.degree.levelMaestríaspa
thesis.degree.disciplineFacultad de Ingeniería. Maestría en Ingenieríaspa
thesis.degree.grantorUniversidad de Antioquiaspa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.publisher.placeMedellín, Colombiaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.localTesis/Trabajo de grado - Monografía - Maestríaspa
dc.subject.decsEnfermedad de Alzheimer-
dc.subject.decsAlzheimer Disease-
dc.subject.decsElectroencefalografía-
dc.subject.decsElectroencephalography-
dc.subject.lembAprendizaje automático (inteligencia artificial)-
dc.subject.lembMachine learning-
dc.subject.proposalPreprocessing pipelinespa
dc.description.researchgroupidCOL0007551spa
Aparece en las colecciones: Maestrías de la Facultad de Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
HenaoIsazaVeronica_ML_Classification_EEG_2023.pdfTesis de maestría5.05 MBAdobe PDFVisualizar/Abrir
slide.pdfAnexo17.6 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons