Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/38246
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorLópez Hincapié, José David-
dc.contributor.advisorIsaza Narváez, Claudia Victoria-
dc.contributor.authorCano Achuri, Maria Isabel-
dc.date.accessioned2024-02-20T14:03:46Z-
dc.date.available2024-02-20T14:03:46Z-
dc.date.issued2023-
dc.identifier.urihttps://hdl.handle.net/10495/38246-
dc.description.abstractABSTRACT : The Colombian armed conflict has affected, to some degree, its entire population. Health authorities require markers to determine the consequences of this exposure and provide appropriate mental health interventions. In this thesis, we propose a novel methodology to automatically find the features that best relate to the level of exposure to the armed conflict and related risks (drug use, college desertion, among others) using the information provided by unsupervised techniques. We use clustering techniques that do not use predefined labels to cluster the data and obtain relevant information from cluster centers. This methodology was tested on two databases with more than 500 mixed response variables (dichotomous, categorical, Likert scale, etc.), the first with 346 subjects with a direct measure of their level of exposure in the context of the Colombian armed conflict, and the second one with 9467 subjects, but without a direct measure of their level of exposure. For the latter, the missing data problem was addressed by finding the appropriate parameters for eliminating and imputing missing values. As a result, 60 features related to exposure were identified as markers, which divided the subjects into three groups, in which characteristics related to high levels of exposure were highlighted. We created an artificial neural network (ANN) based model to confirm the features found as markers of exposure to violence. The model was able to estimate the level of exposure with an accuracy of 99% in training and 76% in validation using the selected features as input.spa
dc.format.extent52 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.titleIdentifying markers of exposure to the Colombian armed conflict: a machine-learning approachspa
dc.typeinfo:eu-repo/semantics/masterThesisspa
dc.publisher.groupSistemas Embebidos e Inteligencia Computacional (SISTEMIC)spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
thesis.degree.nameMagíster en Ingenieríaspa
thesis.degree.levelMaestríaspa
thesis.degree.disciplineFacultad de Ingeniería. Maestría en Ingenieríaspa
thesis.degree.grantorUniversidad de Antioquiaspa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.publisher.placeMedellín, Colombiaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.localTesis/Trabajo de grado - Monografía - Maestríaspa
dc.subject.decsUnsupervised Machine Learning-
dc.subject.decsAprendizaje automático no supervisado-
dc.subject.decsAnálisis por conglomerados-
dc.subject.decsCluster Analysis-
dc.subject.agrovocArmed conflicts-
dc.subject.agrovocConflictos armados-
dc.subject.proposalMissing data imputationspa
dc.subject.agrovocurihttp://aims.fao.org/aos/agrovoc/c_92339-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D000069558-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D016000-
Aparece en las colecciones: Maestrías de la Facultad de Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
CanoMaria_2023_IdentifyingMarkersConflict.pdfTesis de maestría2.18 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons