Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/39626
Título : Functional calibration estimation by the maximum entropy on the mean principle
Autor : Gallón Gómez, Santiago Alejandro
Loubes, Jean Michel
Gamboa, Fabrice
metadata.dc.subject.*: Entropía
Entropy
Auxiliary information
Functional calibration weights
Functional data
Infinite dimensional linear inverse problems
Survey sampling
Fecha de publicación : 2015
Editorial : Taylor and Francis Group
Citación : Gallón, Santiago & Loubes, Jean-Michel & Gamboa, Fabrice. (2013). Functional calibration estimation by the maximum entropy on the mean principle. Statistics. 49. 10.1080/02331888.2014.932795.
Resumen : ABSTRACT: We extend the problem of obtaining an estimator for the finite population mean parameter incorporating complete auxiliary information through calibration estimation in survey sampling but considering a functional data framework. The functional calibration sampling weights of the estimator are obtained by matching the calibration estimation problem with the maximum entropy on the mean principle. In particular, the calibration estimation is viewed as an infinite dimensional linear inverse problem following the structure of the maximum entropy on the mean approach. We give a precise theoretical setting and estimate the functional calibration weights assuming, as prior measures, the centered Gaussian and compound Poisson random measures. Additionally, through a simple simulation study, we show that our functional calibration estimator improves its accuracy compared with the Horvitz-Thompson estimator.
metadata.dc.identifier.eissn: 1029-4910
ISSN : 0233-1888
metadata.dc.identifier.doi: 10.1080/02331888.2014.932795
Aparece en las colecciones: Artículos de Revista en Ciencias Económicas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
GallonSantiago_2015_Functional_Calibration_Estimation.pdfArtículo de investigación1.8 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons