Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/40628
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorCortínez Osorio, Joan Santiago-
dc.contributor.authorGómez Vélez, Alejandro-
dc.contributor.authorZuleta Gil, Alejandro Alberto-
dc.contributor.authorTamayo Sepúlveda, José Adrián-
dc.contributor.authorCorrea Bedoya, Esteban-
dc.contributor.authorVargas Ramírez, Andrés Felipe-
dc.contributor.authorRamírez Sánchez, Carolina-
dc.contributor.authorBolivar Osorio, Francisco Javier-
dc.contributor.authorEcheverría Echeverría, Félix-
dc.contributor.conferencenameWorld Hydrogen Energy Conference (24 : del 23 al 27 de junio de 2024 : Cancún, México)spa
dc.date.accessioned2024-07-18T19:38:58Z-
dc.date.available2024-07-18T19:38:58Z-
dc.date.issued2024-06-25-
dc.identifier.urihttps://hdl.handle.net/10495/40628-
dc.description.abstractABSTRACT: Hydrogen with its high e nergetic density ( 119 .7 MJ/ and facile production through water electrolysis , is a viable alternative energy source. Nevertheless, its low volumetric density and high flammability present challenges for mobile applications [ In response, s olid state storage of hydrogen using metal hydrides has emerged as a promising solution for secure transport and storage of this energy carrier , facilitating its u tilization as a clean fuel source [2], [ 3]. Magnesium, with its low density, natural abundance, affordability, and reversible hydrogenation /dehydrogenation capabilities, stands out as one of the most promising metals for this purpose [ 4]. However, optimizing its t hermodynamic s and kinetic s f or practical applications remain a challenge [Researchers have explored modifications, including morphological changes and nanoparticle additions via high energy ball milling (HEBM). While t hese alterations show improvements in hydrogen storage properties, they often negatively impact gravimetric capacity, theoretically set at 7.6 wt.% for pure Mg [ 6]. Achieving t his full capacity is rar e due to limitations in reaction mechanisms such as the sluggish diffusion of hydrogen through the newly formed MgH 2 on the surface of Mg leading to capacitie s below 4 w t [ Hence a systematic approach that includes both morphological modifications through HEBM and the addition of Ni nanoparticles to pure Mg could help to imp rove the gravimetric capacity of commercially pure M g and kinetics of absorption In this research, we propose a novel two step method of surfactant assisted HEBM to synthesize Mg thin flakes with a thickness of 260 ± 67 nm. This method enables a storage capacity of 4.8 wt.% hydrogen at 350°C and 2 0 bar owing to th e combination of interfacial effects and the shortening of diffusion pathways in one dimension for hydrogen atoms [ 8]. This showcases the potential use of this flake like shaped Mg for efficient hydrogen storage. Additionally, the dispersion of Ni nanoparticles (5 wt.%) on the surface of Mg ultra thin flakes leads to a reduction in the time for maximum absorption from 5 min to 3 min, at the expense of a slight decrease in the hydrogen uptake capacity to approximate ly 4. 5 wt.% at 350°C and 20 bar A Sieverts type apparatus of our own design and construction is employed for pre activation and sorption/desorption tests SEM EDS analysis is conducted to characterize the morphology and elemental composition of the samples before and after hydrogen tests . D uring the activation process the formation of the complex Mg 2 NiH 4 phase is observed through XRD analysis, suggesting potential for lo wer hydrogenation temperatures and improved thermodynamics for the system [ 9]. N i nanoparticles could potentially act as both catalysts and thermodynamic destabilizers of the obtained Mg thin flakes.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.subject.lcshNanopartículas de níquel-
dc.subject.lcshNickel nanoparticles-
dc.subject.lcshHidruros-
dc.subject.lcshHydrides-
dc.titleEnhanced Hydrogen Storage in Mg thin Flakes with dispersed Ni Nanoparticles prepared by High Energy Ball Millingspa
dc.typeinfo:eu-repo/semantics/conferenceObjectspa
dc.publisher.groupCentro de Investigación Innovación y Desarrollo de Materiales (CIDEMAT)spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.citationtitle24th World Hydrogen Energy Conference (WHEC-2024)spa
oaire.citationconferenceplaceCancún, Méxicospa
oaire.citationconferencedate2023-06-23/2023-06-27spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
oaire.fundernameColombia. Ministerio de Ciencia, Tecnología e Innovaciónspa
dc.type.coarhttp://purl.org/coar/resource_type/c_5794spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ECspa
dc.type.localDocumento de conferenciaspa
dc.subject.lembHidrógeno-
dc.subject.lembHydrogen-
dc.subject.lcshurihttp://id.loc.gov/authorities/subjects/sh2020010538-
dc.subject.lcshurihttp://id.loc.gov/authorities/subjects/sh85063361-
oaire.awardtitleAplicación de la nanotecnología al desarrollo de materiales basados en magnesio para almacenamiento de hidrógeno, con el fin de contribuir a viabilizar su uso como combustible limpio en sistemas de transportespa
dc.description.researchareaNuevos materialesspa
dc.description.researchgroupidCOL0007927spa
dc.description.researchcost$691.140.000 COPspa
oaire.awardnumberRC No. 177 del 2021spa
oaire.funderidentifier.rorRoR:03fd5ne08-
Aparece en las colecciones: Documentos de conferencias en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
CortinezJoan_2024_Enhanced_Hydrogen_Storage.pdfDocumento de conferencia2.82 MBAdobe PDFVisualizar/Abrir
CortinezJoan_2024_Enhanced_Hydrogen_Storage_Abstract.pdfDocumento de conferencia167.45 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons