Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/41790
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Orozco Castañeda, Johanna Marcela | - |
dc.contributor.author | Nagar, Daya Krishna | - |
dc.contributor.author | Gupta, Arjun Kumar | - |
dc.date.accessioned | 2024-09-05T00:56:55Z | - |
dc.date.available | 2024-09-05T00:56:55Z | - |
dc.date.issued | 2012 | - |
dc.identifier.issn | 0898-1221 | - |
dc.identifier.uri | https://hdl.handle.net/10495/41790 | - |
dc.description.abstract | ABSTRACT: Let X1, X2 and X3 be independent random variables, X1 and X2 having a confluent hypergeometric function kind 1 distribution with probability density function proportional to x νi−1 i 1F1(αi; βi; −xi), i = 1, 2, and X3 having a standard gamma distribution with shape parameter ν3. Define (Y1, Y2) = (X1/X3, X2/X3) and (Z1, Z2) = (X1, X2)/(X1 + X2 + X3). In this article, we derive probability density functions of (Y1, Y2) and (Z1, Z2), and study their properties. We use the second hypergeometric function of Appell to express these density functions. | spa |
dc.format.extent | 13 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Pergamon Press | spa |
dc.publisher | Elsevier | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.rights | info:eu-repo/semantics/openAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | * |
dc.title | Generalized bivariate beta distributions involving Appell’s hypergeometric function of the second kind | spa |
dc.type | info:eu-repo/semantics/article | spa |
dc.publisher.group | Análisis Multivariado | spa |
dc.identifier.doi | 10.1016/j.camwa.2012.06.006 | - |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
dc.identifier.eissn | 1873-7668 | - |
oaire.citationtitle | Computers and Mathematics with Applications | spa |
oaire.citationstartpage | 2507 | spa |
oaire.citationendpage | 2519 | spa |
oaire.citationvolume | 64 | spa |
oaire.citationissue | 8 | spa |
dc.rights.creativecommons | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
oaire.fundername | Universidad de Antioquia. Vicerrectoría de investigación. Comité para el Desarrollo de la Investigación - CODI | spa |
dc.publisher.place | Nueva York, Estados Unidos | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/ART | spa |
dc.type.local | Artículo de investigación | spa |
dc.subject.lemb | Funciones beta | - |
dc.subject.lemb | Functions, beta | - |
dc.subject.lemb | Teoría de las distribuciones (análisis funcional) | - |
dc.subject.lemb | Theory of distributions (Functional analysis) | - |
dc.subject.lemb | Funciones hipergeométricas | - |
dc.subject.lemb | Hypergeometric functions | - |
dc.subject.lemb | Funciones gamma | - |
dc.subject.lemb | Functions, gamma | - |
dc.subject.lemb | Funciones de coulomb | - |
dc.subject.lemb | Coulomb functions | - |
dc.subject.lemb | Distribución de Gauss | - |
dc.subject.lemb | Gauss distribution | - |
dc.description.researchgroupid | COL0006769 | spa |
oaire.awardnumber | CODI IN550CE | spa |
dc.relation.ispartofjournalabbrev | Comput. Math. Appl. | spa |
oaire.funderidentifier.ror | RoR:03bp5hc83 | - |
Aparece en las colecciones: | Artículos de Revista en Ciencias Exactas y Naturales |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
OrozcoJohanna_2012_ GeneralizedBivariateBeta.pdf | Artículo de investigación | 324.62 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons