Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/42049
Título : FocusNET: An autofocusing learning‐based model for digital lensless holographic microscopy
Autor : Pabón Vidal, Adriana Lucía
García Sucerquia, Jorge Iván
Gómez Ramírez, Alejandra
Herrera Ramírez, Jorge Alexis
Buitrago Duque, Carlos Andrés
Lopera Acosta, María Josef
Montoya, Manuel
Trujillo Anaya, Carlos Alejandro
metadata.dc.subject.*: Aprendizaje Profundo
Deep Learning
Microscopía
Microscopy
https://id.nlm.nih.gov/mesh/D000077321
https://id.nlm.nih.gov/mesh/D008853
Fecha de publicación : 2023
Editorial : Elsevier
Resumen : ABSTRACT: This paper reports on a convolutional neural network (CNN) – based regression model, called FocusNET, to predict the accurate reconstruction distance of raw holograms in Digital Lensless Holographic Microscopy (DLHM). This proposal provides a physical-mathematical formulation to extend its use to different DLHM setups than the optical and geometrical conditions utilized for recording the training dataset; this unique feature is tested by applying the proposal to holograms of diverse samples recorded with different DLHM setups. Additionally, a comparison between FocusNET and conventional autofocusing methods in terms of processing times and accuracy is provided. Although the proposed method predicts reconstruction distances with approximately 54 µm standard deviation, accurate information about the samples in the validation dataset is still retrieved. When compared to a method that utilizes a stack of reconstructions to find the best focal plane, FocusNET performs 600 times faster, as no hologram reconstruction is needed. When implemented in batches, the network can achieve up to a 1200-fold reduction in processing time, depending on the number of holograms to be processed. The training and validation datasets, and the code implementations, are hosted on a public GitHub repository that can be freely accessed.
metadata.dc.identifier.eissn: 1873-0302
ISSN : 0143-8166
metadata.dc.identifier.doi: 10.1016/j.optlaseng.2023.107546
Aparece en las colecciones: Artículos de Revista en Ciencias Médicas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
PabonAdriana_2023_FocusNET_Lensless_Microscopy.pdfArtículo de investigación2.87 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons