Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/44331
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorEstrada Valdés, Mario-
dc.contributor.authorRada Rincón, Juan Pablo-
dc.contributor.authorMorales, Daniel A.-
dc.contributor.authorAraujo García, Oswaldo Rafael-
dc.date.accessioned2025-01-23T14:07:52Z-
dc.date.available2025-01-23T14:07:52Z-
dc.date.issued2005-
dc.identifier.issn0161-1712-
dc.identifier.urihttps://hdl.handle.net/10495/44331-
dc.description.abstractABSTRACT: Given a graph G with n vertices, let p(G, j) denote the number of ways j mutually nonincident edges can be selected in G. The polynomial M(x) = [n/2] j=0 (−1)j p(G, j)xn−2j, called the matching polynomial of G, is closely related to the Hosoya index introduced in applications in physics and chemistry. In this work we generalize this polynomial by introducing the number of disjoint paths of length t, denoted by pt(G, j). We compare this higher-order matching polynomial with the usual one, establishing similarities and differences. Some interesting examples are given. Finally, connections between our generalized matching polynomial and hypergeometric functions are found.spa
dc.format.extent13 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherHindawispa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/co/*
dc.titleThe Higher-Order Matching Polynomial of a Graphspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupÁlgebra, Teoría de Números y Aplicaciones: ERMspa
dc.publisher.groupÁlgebra U de Aspa
dc.identifier.doi10.1155/IJMMS.2005.1565-
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn1687-0425-
oaire.citationtitleInternational Journal of Mathematics and Mathematical Sciencesspa
oaire.citationstartpage1spa
oaire.citationendpage13spa
oaire.citationvolume2005spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by/4.0/spa
dc.publisher.placeNueva York, Estados Unidosspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
dc.subject.lembPolinomios-
dc.subject.lembPolynomials-
dc.subject.lembFunciones hipergeométricas-
dc.subject.lembFunctions, hypergeometric-
dc.subject.lembÁlgebra-
dc.subject.lembAlgebra-
dc.subject.proposalÍndice de Hosoyaspa
dc.subject.proposalPolinomio de orden superiorspa
dc.description.researchgroupidCOL0017217spa
dc.description.researchgroupidCOL0086896spa
dc.relation.ispartofjournalabbrevInt. J. Math. Math. Sci.spa
Aparece en las colecciones: Artículos de Revista en Ciencias Exactas y Naturales

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
EstradaMario_2005_Higher_Order_Polynomial.pdfArtículo de investigación1.9 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons