Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/44331
Título : | The Higher-Order Matching Polynomial of a Graph |
Autor : | Estrada Valdés, Mario Rada Rincón, Juan Pablo Morales, Daniel A. Araujo García, Oswaldo Rafael |
metadata.dc.subject.*: | Polinomios Polynomials Funciones hipergeométricas Functions, hypergeometric Álgebra Algebra Índice de Hosoya Polinomio de orden superior |
Fecha de publicación : | 2005 |
Editorial : | Hindawi |
Resumen : | ABSTRACT: Given a graph G with n vertices, let p(G, j) denote the number of ways j mutually nonincident edges can be selected in G. The polynomial M(x) = [n/2] j=0 (−1)j p(G, j)xn−2j, called the matching polynomial of G, is closely related to the Hosoya index introduced in applications in physics and chemistry. In this work we generalize this polynomial by introducing the number of disjoint paths of length t, denoted by pt(G, j). We compare this higher-order matching polynomial with the usual one, establishing similarities and differences. Some interesting examples are given. Finally, connections between our generalized matching polynomial and hypergeometric functions are found. |
metadata.dc.identifier.eissn: | 1687-0425 |
ISSN : | 0161-1712 |
metadata.dc.identifier.doi: | 10.1155/IJMMS.2005.1565 |
Aparece en las colecciones: | Artículos de Revista en Ciencias Exactas y Naturales |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
EstradaMario_2005_Higher_Order_Polynomial.pdf | Artículo de investigación | 1.9 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons