Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/45192
Título : | Anomaly Classification in Industrial Internet of Things |
Autor : | Rodríguez López, Martha Lucía |
metadata.dc.contributor.advisor: | Múnera Ramírez, Danny Alexandro Tobón Vallejo, Diana Patricia |
metadata.dc.subject.*: | Anomaly detection (Computer security) Detección de anomalías (Seguridad informática) Seguridad en computadores Computer security Confiabilidad (ingeniería) Reliability (engineering) Internet de las cosas Internet of things Industrial Internet of Things (IIoT) http://aims.fao.org/aos/agrovoc/c_e4315b22 http://id.loc.gov/authorities/subjects/sh2005007675 |
Fecha de publicación : | 2025 |
Resumen : | ABSTRACT : This thesis presents an IIoT Anomaly Classification Framework designed to detect and categorize anomalies, including failures, attacks, and other significant events. The research addresses the critical need for robust anomaly detection and classification in IIoT systems by providing a comprehensive and scalable solution adaptable to various industrial contexts. The framework enhances modern industrial operations’ reliability, security, and efficiency, paving the way for more resilient and intelligent IIoT systems. |
Aparece en las colecciones: | Doctorados de la Facultad de Ingeniería |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
RodriguezMartha_2025_AnomalyClassificationIIoT | Tesis doctoral | 4.88 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.