Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/45461
Título : Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases
Autor : Hernández Arango, Alejandro
Arias, María Isabel
Pérez, Viviana
Chavarría, Luis Daniel
Jaimes Barragán, Fabián Alberto
metadata.dc.subject.*: Sistemas de Apoyo a Decisiones Clínicas - organización & administración
Decision Support Systems, Clinical - organization & administration
Registros Electrónicos de Salud
Electronic Health Records
Servicio de Urgencia en Hospital - estadística & datos numéricos
Emergency Service, Hospital - statistics & numerical data
Hospitalización
Hospitalization
Modelos Logísticos
Logistic Models
Aprendizaje Automático
Machine Learning
Redes Neurales de la Computación
Neural Networks, Computer
Medición de Riesgo - métodos
Risk Assessment - methods
https://id.nlm.nih.gov/mesh/D020000
https://id.nlm.nih.gov/mesh/D057286
https://id.nlm.nih.gov/mesh/D004636
https://id.nlm.nih.gov/mesh/D006760
https://id.nlm.nih.gov/mesh/D016015
https://id.nlm.nih.gov/mesh/D000069550
https://id.nlm.nih.gov/mesh/D016571
https://id.nlm.nih.gov/mesh/D018570
Fecha de publicación : 2025
Editorial : Springer
Citación : Hernández-Arango, A., Arias, M.I., Pérez, V. et al. Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases. J Med Syst 49, 19 (2025). https://doi.org/10.1007/s10916-025-02140-z
Resumen : ABSTRACT: Decision-making in chronic diseases guided by clinical decision support systems that use models including multiple variables based on artificial intelligence requires scientific validation in different populations to optimize the use of limited human, financial, and clinical resources in healthcare systems worldwide. This cohort study evaluated three machine learning algo-rithms—XGBoost, Elastic Net logistic regression, and an Artificial Neural Network—to develop a prediction model for three outcomes: mortality, hospitalization, and emergency department visits. The objective was to build a clinical decision support system for patients with noncommunicable diseases treated at the Alma Mater Hospital complex in Medellín, Colombia. We collected 4845 electronic medical record entries from 5000 patients included in the study. The median age was 71.83 years, with 63.8% women and 29.7% receiving home care. The most prevalent medical conditions were diabetes (52.9%), hypertension (67.2%), dyslipidemia (57.3%), and COPD (19.4%). For mortality prediction, the Elastic Net logistic regression model achieved an AUCROC of 0.883 (95% CI: 0.848–0.917), the XGBoost model reached an AUCROC of 0.896 (95% CI: 0.865–0.927), and the Neural Network achieved 0.886 (95% CI: 0.853–0.916). For hospitalization, the Elastic Net model had an AUCROC of 0.952 (95% CI: 0.937–0.965), the XGBoost model achieved 0.963 (95% CI: 0.952–0.974), and the Neural Network scored 0.932 (95% CI: 0.915–0.948). For emergency department visits, the AUCROC values were 0.980 (95% CI: 0.971–0.987) for Elastic Net, 0.977 (95% CI: 0.967–0.986) for XGBoost, and 0.976 (95% CI: 0.968–0.982) for the neural network. A dashboard was developed to interact with an ensemble risk categorization segmenting patient risk in the cohort to aid in clinical decision-making. A clinical decision support system based on artificial intelligence using electronic medical records possibly can help segmenting the risk in populations with Noncommunicable Diseases for effective decision-making.
metadata.dc.identifier.eissn: 1573-689X
ISSN : 0148-5598
metadata.dc.identifier.doi: 10.1007/s10916-025-02140-z
Aparece en las colecciones: Artículos de Revista en Ciencias Médicas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
HernandezAlejandro_2025_Prediction_Risk_Clinical.pdfArtículo de investigación1.3 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons