Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/45461
Título : | Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases |
Autor : | Hernández Arango, Alejandro Arias, María Isabel Pérez, Viviana Chavarría, Luis Daniel Jaimes Barragán, Fabián Alberto |
metadata.dc.subject.*: | Sistemas de Apoyo a Decisiones Clínicas - organización & administración Decision Support Systems, Clinical - organization & administration Registros Electrónicos de Salud Electronic Health Records Servicio de Urgencia en Hospital - estadística & datos numéricos Emergency Service, Hospital - statistics & numerical data Hospitalización Hospitalization Modelos Logísticos Logistic Models Aprendizaje Automático Machine Learning Redes Neurales de la Computación Neural Networks, Computer Medición de Riesgo - métodos Risk Assessment - methods https://id.nlm.nih.gov/mesh/D020000 https://id.nlm.nih.gov/mesh/D057286 https://id.nlm.nih.gov/mesh/D004636 https://id.nlm.nih.gov/mesh/D006760 https://id.nlm.nih.gov/mesh/D016015 https://id.nlm.nih.gov/mesh/D000069550 https://id.nlm.nih.gov/mesh/D016571 https://id.nlm.nih.gov/mesh/D018570 |
Fecha de publicación : | 2025 |
Editorial : | Springer |
Citación : | Hernández-Arango, A., Arias, M.I., Pérez, V. et al. Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases. J Med Syst 49, 19 (2025). https://doi.org/10.1007/s10916-025-02140-z |
Resumen : | ABSTRACT: Decision-making in chronic diseases guided by clinical decision support systems that use models including multiple variables based on artificial intelligence requires scientific validation in different populations to optimize the use of limited human, financial, and clinical resources in healthcare systems worldwide. This cohort study evaluated three machine learning algo-rithms—XGBoost, Elastic Net logistic regression, and an Artificial Neural Network—to develop a prediction model for three outcomes: mortality, hospitalization, and emergency department visits. The objective was to build a clinical decision support system for patients with noncommunicable diseases treated at the Alma Mater Hospital complex in Medellín, Colombia. We collected 4845 electronic medical record entries from 5000 patients included in the study. The median age was 71.83 years, with 63.8% women and 29.7% receiving home care. The most prevalent medical conditions were diabetes (52.9%), hypertension (67.2%), dyslipidemia (57.3%), and COPD (19.4%). For mortality prediction, the Elastic Net logistic regression model achieved an AUCROC of 0.883 (95% CI: 0.848–0.917), the XGBoost model reached an AUCROC of 0.896 (95% CI: 0.865–0.927), and the Neural Network achieved 0.886 (95% CI: 0.853–0.916). For hospitalization, the Elastic Net model had an AUCROC of 0.952 (95% CI: 0.937–0.965), the XGBoost model achieved 0.963 (95% CI: 0.952–0.974), and the Neural Network scored 0.932 (95% CI: 0.915–0.948). For emergency department visits, the AUCROC values were 0.980 (95% CI: 0.971–0.987) for Elastic Net, 0.977 (95% CI: 0.967–0.986) for XGBoost, and 0.976 (95% CI: 0.968–0.982) for the neural network. A dashboard was developed to interact with an ensemble risk categorization segmenting patient risk in the cohort to aid in clinical decision-making. A clinical decision support system based on artificial intelligence using electronic medical records possibly can help segmenting the risk in populations with Noncommunicable Diseases for effective decision-making. |
metadata.dc.identifier.eissn: | 1573-689X |
ISSN : | 0148-5598 |
metadata.dc.identifier.doi: | 10.1007/s10916-025-02140-z |
Aparece en las colecciones: | Artículos de Revista en Ciencias Médicas |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
HernandezAlejandro_2025_Prediction_Risk_Clinical.pdf | Artículo de investigación | 1.3 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons